Gold Science and Technology ›› 2020, Vol. 28 ›› Issue (1): 134-141.doi: 10.11872/j.issn.1005-2518.2020.01.053
• Mining Technology and Mine Management • Previous Articles Next Articles
Renhao LI1(),Helong GU1,Xibing LI1,Kuikui HOU2,Deming ZHU2,Xi WANG2
CLC Number:
1 | 许迎年,徐文胜,王元汉,等.岩爆模拟试验及岩爆机理研究[J].岩石力学与工程学报,2002,21(10):1462-1466. |
Xu Yingnian,Xu Wensheng,Wang Yuanhan,et al.Simulation testing and mechanism studies on rockburst[J].Chinese Journal of Rock Mechanics and Engineering,2002,21(10):1462-1466. | |
2 | 李夕兵,宫凤强,王少锋,等.深部硬岩矿山岩爆的动静组合加载力学机制与动力判据[J].岩石力学与工程学报,2019,38(4):708-723. |
Li Xibing,Gong Fengqiang,Wang Shaofeng,et al.Coupled static-dynamic loading mechanical mechanism and dynamic criterion of rockburst in deep hard rock mines[J].Chinese Journal of Rock Mechanics and Engineering,2019,38(4):708-723. | |
3 | 卢富然,陈建宏.基于AHP和熵权TOPSIS模型的岩爆预测方法[J].黄金科学技术,2018,26(3):365-371. |
Lu Furan,Chen Jianhong.Rockburst prediction method based on AHP and entropy weight TOPSIS model[J].Gold Science and Technology,2018,26(3):365-371. | |
4 | 李夕兵.岩石动力学基础与应用[M].北京:科学出版社,2014. |
Li Xibing.Rock Dynamics Fundamentals and Application[M].Beijing:Science Press,2014. | |
5 | 张镜剑,傅冰骏.岩爆及其判据和防治[J].岩石力学与工程学报,2008,27(10):2034-2042. |
Zhang Jingjian,Fu Bingjun.Rockburst and its criteria and control[J].Chinese Journal of Rock Mechanics and Engineering,2008,27(10):2034-2042. | |
6 | 吴昊,陈炳瑞,池秀文,等.基于区域性微震活动的深部采场稳定性分析[J].黄金科学技术,2018,26(3):325-333. |
Wu Hao,Chen Bingrui,Chi Xiuwen,et al.Stability analysis of deep stope based on regional microseismic activity[J].Gold Science and Technology,2018,26(3):325-333. | |
7 | Dou L,Chen T,Gong S,et al.Rockburst hazard determination by using computed tomography technology in deep workface[C]//The First International Symposium on Mine Safety Science & Engineering.Beijing:Chinese Academy of Safety Science and Technology,2012:1205-1212. |
8 | 李长洪,张立新,张磊,等.灰色突变理论及声发射在岩爆预测中的应用[J].中国矿业,2008,17(8):87-90. |
Li Changhong,Zhang Lixin,Zhang Lei,et al.Application of grey catastrophe theory and acoustic emission in rock burst prediction[J].China Mining Magazine,2008,17(8):87-90. | |
9 | 王元汉,李卧东,李启光,等.岩爆预测的模糊数学综合评判方法[J].岩石力学与工程学报,1998,17(5):493-501. |
Wang Yuanhan,Li Wodong,Li Qiguang,et al.Method of fuzzy comprehensive evaluations for rockburst prediction[J].Chinese Journal of Rock Mechanics and Engineering,1998,17(5):493-501. | |
10 | 史秀志,周健,董蕾,等.未确知测度模型在岩爆烈度分级预测中的应用[J].岩石力学与工程学报,2010,29(增1):2720-2726. |
Shi Xiuzhi,Zhou Jian,Dong Lei,et al.Application of unascertained measurement model to prediction of classification of rockburst intensity[J].Chinese Journal of Rock Mechanics and Engineering,2010,29(Supp.1):2720-2726. | |
11 | 王旷,李夕兵,马春德,等.基于改进的RS-TOPSIS模型的岩爆倾向性预测[J].黄金科学技术,2019,27(1):80-88. |
Wang Kuang,Li Xibing,Ma Chunde,et al.Rock-burst proneness prediction based on improved RS-TOPSIS model[J].Gold Science and Technology,2019,27(1):80-88. | |
12 | Dong L J,Li X B,Peng K.Prediction of rockburst classification using Random Forest[J].Transactions of Nonferrous Metals Society of China,2013,23(2):472-477. |
13 | 张德永,王玉洲,张志豪.RBF神经网络在岩爆预测中的应用[J].土工基础,2013,27(5):31-33,59. |
Zhang Deyong,Wang Yuzhou,Zhang Zhihao.Application of RBF neural network in rockburst prediction[J].Soil Engineering and Foundation,2013,27(5):31-33,59. | |
14 | 李夕兵,朱玮,刘伟军,等.基于主成分分析法与RBF神经网络的岩体可爆性研究[J].黄金科学技术,2015,23(6):58-63. |
Li Xibing,Zhu Wei,Liu Weijun,et al.Research on rock mass blastability based on principal component analysis and RBF neural network[J].Gold Science and Technology,2015,23(6):58-63. | |
15 | 李爱国,覃征,鲍复民,等.粒子群优化算法[J].计算机工程与应用,2002,38(21):1-3,17. |
Li Aiguo,Qin Zheng,Bao Fumin,et al.Particle swarm optimization algorithm[J].Computer Engineering and Applications,2002,38(21):1-3,17. | |
16 | 谢旭,陈芸芝.基于PSO-RBF神经网络模型反演闽江下游水体悬浮物浓度[J].遥感技术与应用,2018,33(5):900-907. |
Xie Xu,Chen Yunzhi.Retrieval of total suspended matter in the lower of Minjiang River based on PSO-RBF[J].Remote Sensing Technology and Application,2018,33(5):900-907. | |
17 | 杨金林,李夕兵,周子龙,等.基于粗糙集理论的岩爆预测模糊综合评价[J].金属矿山,2010,39(6):26-29. |
Yang Jinlin,Li Xibing,Zhou Zilong,et al.A fuzzy assessment method of rockburst prediction based on rough set theory[J].Metal Mine,2010,39(6):26-29. | |
18 | 赵洪波.岩爆分类的支持向量机方法[J].岩土力学,2005,26(4):642-644. |
Zhao Hongbo.Classification of rockburst using support vector machine[J].Rock and Soil Mechanics,2005,26(4):642-644. | |
19 | 周科平,雷涛,胡建华.深部金属矿山RS-TOPSIS岩爆预测模型及其应用[J].岩石力学与工程学报,2013,32(增2):3705-3711. |
Zhou Keping,Lei Tao,Hu Jianhua.RS-TOPSIS model of rockburst prediction in deep metal mines and its application[J].Chinese Journal of Rock Mechanics and Engineering,2013,32(Supp.2):3705-3711. | |
20 | 张乐文,张德永,李术才,等.基于粗糙集理论的遗传-神经网络在岩爆预测中的应用[J].岩土力学,2012(增1):270-276. |
Zhang Lewen,Zhang Deyong,Li Shucai,et al.Application of RBF neural network to rockburst prediction based on rough set theory[J].Rock and Soil Mechanics,2012(Supp.1):270-276. | |
21 | 常兴兵,张方安,唐彦杰.江边水电站引水隧洞岩爆特征及防治措施[J].西北水电,2010(2):57-59. |
Chang Xingbing,Zhang Fang’an,Tang Yanjie.Rockburst characteristics of head race tunnel for Jiangbian hydropower project and countermeasures[J].Northwest Hydropower,2010(2):57-59. |
[1] | Yanan ZHAO, Yihang ZHAO, Zhongming JIANG, Hongmin ZHAO. Preliminary Study on Static and Dynamic Stability of Canister for High-level Radioactive Nuclear Waste Disposal Based on Discrete Element Method [J]. Gold Science and Technology, 2023, 31(4): 592-604. |
[2] | Li GONG,Lili LU,Chunling JIN,Dong LIANG,Hanguo ZHOU,Ping XIE. Propensity Grade Prediction of Rockburst Based on Normal Membership-Attribute Interval Recognition Model [J]. Gold Science and Technology, 2022, 30(3): 404-413. |
[3] | Qiang ZENG,Xiaorong HUANG,Xiaojun WANG,Qinglin CHEN,Jian LIU,Cong GONG. Experimental Study on Rock Burst Tendency and Acoustic Emission Characteristics of Limestone at Different Buried Depths [J]. Gold Science and Technology, 2021, 29(6): 863-873. |
[4] | Jianhua HU,Mengmeng GUO,Tan ZHOU,Tao ZHANG. Rock Mass Quality Evaluation Model Based on Improved Transfer Learning Algorithm [J]. Gold Science and Technology, 2021, 29(6): 826-833. |
[5] | Guoyan ZHAO,Chengkai DANG,Huanxin LIU,Yang LIU,Quri XIAO,Yang LI,Liqiang CHEN,Wenjie MAO. Evaluation of Mine Rockburst Tendency Based on the Distance Discrimination Analysis [J]. Gold Science and Technology, 2021, 29(5): 690-697. |
[6] | Jin HUANG,Kewei LIU,Shaohu JIN. Numerical Simulation Study of High-strength Projectile Penetrating White Granite Target [J]. Gold Science and Technology, 2021, 29(3): 411-420. |
[7] | Jingkai JIA,Gun HUANG,Long WANG,Qiang CHENG,Libing ZHEN. Study on a New Method of Weakening End Effect in Uniaxial Compression Test [J]. Gold Science and Technology, 2021, 29(3): 382-391. |
[8] | Jianhua HU,Zhezhe DONG,Shaowei MA,Yaguang QIN,Xiao XU,Zhuan Dai. Seepage Characteristics of Damaged Rock Under Stress-Seepage Coupling [J]. Gold Science and Technology, 2021, 29(3): 355-363. |
[9] | Rui TIAN,Haidong MENG,Shijiang CHEN,Chuangye WANG,Dening SUN,Lei SHI. Comparative Study on Three Rockburst Prediction Models of Intensity Classi-fication Based on Machine Learning [J]. Gold Science and Technology, 2020, 28(6): 920-929. |
[10] | Rui XU, Kuikui HOU, Xi WANG, Xingquan LIU, Xibing LI. Combined Prediction Model of Rockburst Intensity Based on Kernel Principal Component Analysis and SVM [J]. Gold Science and Technology, 2020, 28(4): 575-584. |
[11] | Tongtong LI, Xi WANG, Huanxin LIU, Kuikui HOU, Xibing LI. Research and Application of T-FME Rockburst Propensity Prediction Model Based on Combination Weighting [J]. Gold Science and Technology, 2020, 28(4): 565-574. |
[12] | Chundi FENG,Rendong HUANG. Plastic Strain Analysis of Mineral Particles in Red Sandstone [J]. Gold Science and Technology, 2019, 27(4): 557-564. |
[13] | Bing SUN,Yu LUO,Jiehui XIE,Sheng ZENG. Failure Test of N-type Combination Jointed Rock Mass Under Uniaxial Compression [J]. Gold Science and Technology, 2019, 27(4): 548-556. |
[14] | Keming LI,Zhixiang LIU,Ming LAN. Research on Water Inrush Risk Assessment and Water Inflow Chaotic Prediction of Coastal Gold Mine [J]. Gold Science and Technology, 2019, 27(4): 539-547. |
[15] | Shijiao YANG,Zhihui WANG. Numerical Simulation on Stability of Shallow-buried Goaf Group with Overlying Highway [J]. Gold Science and Technology, 2019, 27(4): 505-512. |
|