[an error occurred while processing this directive] [an error occurred while processing this directive] [an error occurred while processing this directive]
[an error occurred while processing this directive]
采选技术与矿山管理

浸矿作用下离子型稀土典型重金属释放规律研究

  • 郭钟群 , 1, 2 ,
  • 罗飞跃 1 ,
  • 唐韬 1 ,
  • 谢少俊 1 ,
  • 刘强强 1 ,
  • 冯秀娟 3
展开
  • 1. 江西理工大学土木与测绘工程学院,江西 赣州 341000
  • 2. 河流源头水生态保护江西省重点实验室,江西 赣州 341000
  • 3. 中国矿业大学矿业工程学院,江苏 徐州 221116

郭钟群(1987-),男,江西九江人,博士,副教授,从事离子型稀土高效绿色开采及环境岩土工程等研究工作。

收稿日期: 2024-05-15

  修回日期: 2024-08-28

  网络出版日期: 2024-12-20

基金资助

国家自然科学基金项目“离子型稀土渗流—应力—化学耦合作用机理与溶浸开采优化研究”(52364012)

江西省自然科学基金项目“原地溶浸作用下离子型稀土矿渗流—应力—化学耦合模型研究”(20224BAB214035)

Release Regularity of Heavy Metals of Ion-type Rare Earth Ore Under Leaching Conditions

  • Zhongqun GUO , 1, 2 ,
  • Feiyue LUO 1 ,
  • Tao TANG 1 ,
  • Shaojun XIE 1 ,
  • Qiangqiang LIU 1 ,
  • Xiujuan FENG 3
Expand
  • 1. School of Civil Engineering and Surveying & Mapping Engineering,Jiangxi University of Science and Technology,Ganzhou 341000,Jiangxi,China
  • 2. Jiangxi Provincial Key Laboratory of Water Ecological Conservation in Headwater Regions,Ganzhou 341000,Jiangxi,China
  • 3. School of Mines,China University of Mining and Technology,Xuzhou 221116,Jiangsu,China

Received date: 2024-05-15

  Revised date: 2024-08-28

  Online published: 2024-12-20

摘要

浸矿场地土壤重金属污染严重制约离子型稀土资源绿色开发。在原地浸矿过程中,浸矿液与稀土阳离子发生离子交换反应,同时置换出部分重金属离子,导致土壤重金属活化,进而造成土壤及地下水重金属污染。通过开展不同浓度MgSO4浸矿条件下离子型稀土模拟浸矿试验,揭示了浸矿液浓度对离子型稀土重金属Cu、Zn、Pb和Tl释放的影响规律,通过相关性分析和多元线性回归分析,对重金属含量与影响因素进行解析。研究结果表明:在不同浓度MgSO4的浸矿作用下,典型重金属呈现纵向迁移的趋势。重金属Cu、Pb、Tl含量与MgSO4浓度之间存在负相关关系,Zn含量与MgSO4浓度相关性不显著,Cu主要富集在中层土壤,Zn主要富集在中下层土壤,Pb和Tl主要富集在下层土壤。土壤pH值与Eh值呈显著负相关,土壤pH值、Eh值与典型重金属存在相关性。研究结果为矿区土壤重金属污染防治与绿色开采提供理论依据。

本文引用格式

郭钟群 , 罗飞跃 , 唐韬 , 谢少俊 , 刘强强 , 冯秀娟 . 浸矿作用下离子型稀土典型重金属释放规律研究[J]. 黄金科学技术, 2024 , 32(6) : 1056 -1067 . DOI: 10.11872/j.issn.1005-2518.2024.06.128

Abstract

Ion-type rare earth deposits,which are abundant in medium and heavy rare earth elements,constitute strategic mineral resources predominantly located in Jiangxi,Fujian,Guangxi,and several other southern provinces and regions.In these deposits,rare earth elements are adsorbed onto clay minerals as hydrated cations or hydroxyl hydrated cations.Due to this specific mode of occurrence,conventional mining and beneficiation techniques are ineffective for their extraction.Consequently,the in-situ leaching method is recommended for the efficient recovery of these elements.During the leaching process,an electrolyte solution is introduced into the mineral soil to facilitate ion exchange leaching.Concurrently,heavy metal ions present in the mine soil are mobilized and transported to adjacent farmland and water bodies along with the leaching solution.This migration poses a significant environmental impact on the surrounding areas of the mine.The resultant heavy metal contamination in the soil at the leaching site severely hinders the sustainable development of ion-type rare earth resources.During the in-situ leaching process,the leaching solution engages in an ion exchange reaction with rare earth cations.Concurrently,this process displaces certain heavy metal ions,leading to the mobilization of these metals within the soil.Consequently,this mobilization can result in the contamination of both soil and groundwater with heavy metals.In this study,simulated leaching experiments of ion-type rare earth elements were conducted using three different concentrations of MgSO4 solutions(3%,6%,9%).The objective was to elucidate the impact of leaching solution concentration on the release of ion-type rare earth heavy metals,specifically Cu,Zn,Pb,and Tl.The content and influencing factors of these heavy metals were analyzed through correlation analysis and multiple linear regression analysis.The findings indicate that,under the influence of varying concentrations of MgSO4,the typical heavy metals exhibit a longitudinal migration trend.A negative correlation was observed between the concentrations of Cu,Pb,and Tl and the concentration of MgSO4,while no significant correlation was found between Zn and MgSO4 concentration.Cu was predominantly enriched in the middle soil strata,Zn in both the middle and lower soil strata,and Pb and Tl primarily in the lower soil strata.Additionally,a significant negative correlation was identified between soil pH and Eh values.Furthermore,correlations were noted between soil pH and Eh values and the concentrations of typical heavy metals.The results of this study provide a theoretical basis for the prevention and control of heavy metal pollution and green mining in the mining area.

[an error occurred while processing this directive]

《全球矿业发展报告2024》显示:全球矿业产业链格局调整 矿业发展进入新周期

10月16日,在2024中国国际矿业大会“一带一路”地学合作与矿业投资论坛上,自然资源部中国地质调查局国际矿业研究中心发布了《全球矿业发展报告2024》(以下简称《报告》)。《报告》显示,全球矿业产业链格局调整,矿业发展进入新周期。

《报告》综合分析了新周期下全球矿业发展态势,显示新周期下全球经济艰难前行,地缘政治和金融政策渗入全球制造业格局演变,产业链供应链风险上升。全球固体矿产勘查投入约127.6亿美元,同比下降1.8%。全球矿业项目融资下降但并购金额增加。

供需方面,全球能源资源新增储量、产量、消费量持续调整。其中,化石能源整体供需双升。大宗矿产供需分化明显,钢铁供需双降,供应过剩程度增加;铜供给增速高于需求增速,供需缺口大幅缩小;铝供给增速高于需求增速,供过于求。战略性新兴矿产产量快速增长,锂、钴、镍均供过于求,贸易量下降明显。贵金属黄金、白银需求冲高后回落,铂金供需双降。

市场价格方面,国际矿产品价格总体震荡下行。能源矿产品价格均价下降,大宗固体矿产价格震荡加剧,电池级碳酸锂年内价格跌幅超八成。矿业公司股价震荡下行。主要油气公司股价下滑,主要固体矿产公司股价先抑后扬,战略性新兴矿产公司股价大幅下降,黄金业务公司净利润和市值持续上涨。全球50强矿业公司总市值相对稳定,但结构变化大。全球锂电产业链整体需求放缓,全球氢能项目规模持续扩大。环境、社会和公司治理(ESG)标准嵌入头部企业架构并融入未来发展战略。

《报告》指出,2023年全球主要国家和地区持续更新战略性矿产政策,通过达成关键矿产政府间战略合作或贸易协议、出台发展关键矿产及供应链的法律法规及政策、推进矿业项目与基础设施协同等方式,促进矿产产业链本土化和矿业可持续发展。新一轮科技革命和产业变革深入发展,矿业开发技术装备成为国际矿业合作博弈中关键变量。AI找矿探索变革矿产勘查范式,矿业发展新质生产力未来可期。全球勘查开发、资源回收利用等技术装备加速发展,呈高效化、智能化、高精度、低碳化等态势。低品位难选矿技术向绿色化、自动化方向发展。大型化、多力场、自动化与多学科交叉是低品位矿产资源选矿设备研发重点。

《报告》预计,新质生产力赋予矿业高质量发展新动能。卫星遥感、大数据、物联网等先进技术将持续催生AI找矿、智能矿山等新产业,数据资产定价将引领全球矿业新基建,促进矿产资源综合利用水平提升和城市矿产利用。在人类命运共同体理念指引下,矿产原产地产业链延伸不可逆转,制造业大国和基建大国凸显竞争优势,将为全球矿业合作持续贡献产业力量。各国应加强关键矿产领域协作,共同维护产业链供应链稳定畅通,引导推动矿业节约集约和绿色发展,为世界经济增长贡献力量。

脚注

中国自然资源报)

http://www.goldsci.ac.cn/article/2024/1005-2518/1005-2518-2024-32-6-1056.shtml

Cao Fei Yang Dabing Li Qiankun,et al,2016.The status quo of leaching technology of weathered crust elution deposited rare earth ores[J].Chinese Rare Earths37(2):129-136.

Chi Ru’an Liu Xuemei2019.Current status and prospect of weathering shell alluvial rare earth mine development[J].Journal of the Chinese Society of Rare Earth37(2):129-140.

Chi Ru’an Tian Jun2007.Review of weathered crust rare earth ore[J].Journal of the Chinese Society of Rare Earths,(6):641-650.

Guo Z Q Zhou J R Zhou K F,et al,2021.Soil-water characteristics of weathered crust elution-deposited rare earth ores [J].Transactions of Nonferrous Metals Society of China31(5):1452-1464.

Guo Zhongqun Jin Jiefang Zhao Kui,et al,2018.Status of leaching technology and theory of ion adsorption type rare earth ores [J].Chinese Rare Earths,2018,39(1):132-141.

Guo Zhongqun Zhao Kui Jin Jiefang,et al,2019a.Problems faced in the development of ionic rare earth and the research progress of green extraction[J].Chemical progress38(7):3425-3433.

Guo Zhongqun Zhao Kui Jin Jiefang,et al,2019b.Reviews on environmental assessment and pollution prevention of ion adsorption type rare earth ores[J].Chinese Rare Earths40(3):115-126.

Guo Zhongqun Zhao Kui Jin Jiefang,et al,2019c.Solute transport mechanism of ion-adsorption type rare earth in-situ leaching mining[J].Journal of the Chinese Society of Rare Earths37(1):121-128.

Li Yongxiu Zhang Ling Zhou Xinmu2010.Resource and environmental protection mining mode of ionic rare earth in southern China[J].Chinese Rare Earths31(2):80-85.

Li Yongxiu Zhou Xinmu Liu Yanzhu,et al,2012.Development of high efficiency extraction and separation technologies of rare earths from ion-adsorbed type deposit[J].Journal of the Chinese Society of Rare Earths30(3):257-264.

Liu Yanzhu Ding Zhengxiong Kong Weichang,et al,2023.Evolution of leaching reagents and enrichment recovery technology of ion adsorption rare earths:Leaching strategy from impurity suppression to enhancing and selection-enhancing in stages[J].Journal of the Chinese Society of Rare Earths41(3):610-622.

Tan Qihai Zhao Yonghong Huang Lu,et al,2022.Effects of ammonium sulfate on the release and morphological transformation of heavy metals from soil in ionic rare earth mining areas[J].Nonferrous Metals Science and Engineering13(6):134-144.

Tian J Chi R A Yin J Q2010a.Leaching process of rare earths from weathered crust elution-deposited rare earth ore[J].Transactions of Nonferrous Metals Society of China20(5):892-896.

Tian J Yin J Q Chen K L,et al,2010b.Optimisation of mass transfer in column elution of rare earths from low grade weathered crust elution-deposited rare earth ore[J].Hydrometallurgy103(1):211-214.

Wang Chao Wang Li Li Liu,et al,2018.Experiments on leaching of different grades of ion type rare earth ores with (NH42SO4/MgSO4 [J].Chinese Rare Earths39(1):67-74.

Wang M Huang X W Xia C,et al,2023.Efficient preparation of magnesium bicarbonate from magnesium sulfate solution and saponification-extraction for rare earth separation [J].Transactions of Nonferrous Metals Society of China33(2):584-595.

Wang Xiaojun Zhong Qiping Hu Kaijian,et al,2022.Shear mechanical properties and microseismic signal characteristics of ionadsorption rare earth ore [J].Gold Science and Technology30(6):912-922.

Xiao Y F Chen Y Y Feng Z Y,et al,2015.Leaching characteristics of ion-adsorption type rare earths ore with magnesium sulfate[J].Transactions of Nonferrous Metals Society of China,(25):3784-3790.

Xiao Yanfei Huang Xiaowei Feng Zongyu,et al,2015a.Progress in the green extraction technology for rare earth from ion-adsorption type rare earths ore[J].Chinese Rare Earths36(3):109-115.

Xiao Yanfei Huang Xiaowei Feng Zongyu,et al,2015b.Environmental impact assessment and prospect for ion-adsorption type rare earths ore leaching by magnesium salt[J].Journal of the Chinese Society of Rare Earths33(1):1-9.

Xiao Zijie Liu Zuwen Zhang Nian,et al,2014.Environmental impact analysis and control technology of ionic rare earth mining and beneficiation process[J].Chinese Rare Earths35(6):56-61.

Yang Xiuying Liu Zuwen Hu Fangjie,et al,2019.Soil rare earth element and nitride pollution on plant growth and physiology[J].Journal of the Chinese Society of Rare Earths37(1):1-11.

曹飞,杨大兵,李乾坤,等,2016.风化壳淋积型稀土矿浸取技术发展现状[J].稀土37(2):129-136.

池汝安,刘雪梅,2019.风化壳淋积型稀土矿开发的现状及展望[J].中国稀土学报37(2):129-140.

池汝安,田君,2007.风化壳淋积型稀土矿评述[J].中国稀土学报,(6):641-650.

郭钟群,金解放,赵奎,等,2018.离子吸附型稀土开采工艺与理论研究现状[J].稀土39(1):132-141.

郭钟群,赵奎,金解放,等,2019a.离子型稀土开发面临的问题与绿色提取研究进展[J].化工进展38(7):3425-3433.

郭钟群,赵奎,金解放,等,2019b.离子型稀土矿环境风险评估及污染治理研究进展[J].稀土40(3):115-126.

郭钟群,赵奎,金解放,等,2019c.离子型稀土原地浸矿过程溶质运移机制研究[J].中国稀土学报37(1):121-128.

李永绣,张玲,周新木,2010.南方离子型稀土的资源和环境保护性开采模式[J].稀土31(2):80-85.

李永绣,周新木,刘艳珠,等,2012.离子吸附型稀土高效提取和分离技术进展[J].中国稀土学报30(3):257-264.

刘艳珠,丁正雄,孔维长,等,2023.离子吸附型稀土浸取试剂和富集回收技术的演变——从抑杂浸取到强化浸取及分阶段的选择—强化浸取[J].中国稀土学报41(3):610-622.

谭启海,赵永红,黄璐,等,2022.硫酸铵对离子型稀土矿区土壤重金属的释放和形态转化影响[J].有色金属科学与工程13(6):134-144.

王超,王莉,李柳,等,2018.不同品位离子吸附型稀土矿(NH42SO4 / MgSO4浸矿实验[J].稀土39(1):67-74.

王晓军,钟启平,胡凯建,等,2022.离子吸附型稀土矿剪切力学特性及微震信号特征[J].黄金科学技术30(6):912-922.

肖燕飞,黄小卫,冯宗玉,等,2015a.离子吸附型稀土矿绿色提取技术研究进展[J].稀土36(3):109-115.

肖燕飞,黄小卫,冯宗玉,等,2015b.镁盐浸出离子吸附型稀土矿的环境影响评价及展望[J].中国稀土学报33(1):1-9.

肖子捷,刘祖文,张念,等,2014.离子型稀土采选工艺环境影响分析与控制技术[J].稀土35(6):56-61.

杨秀英,刘祖文,胡方洁,等,2019.土壤稀土元素和氮化物污染对植物生长及生理的影响[J].中国稀土学报37(1):1-11.

文章导航

/

[an error occurred while processing this directive]