收稿日期: 2024-04-24
修回日期: 2024-07-12
网络出版日期: 2024-09-19
基金资助
镍钴资源综合利用国家重点实验室开放课题“破碎岩体条件下多种支护形式耦合协同作用机理研究”(GZSYS-KY-2021-022);四川省自然科学基金(青年科学基金项目)“高地应力下裂隙岩体爆破损伤及定向致裂机理”(2022NSFSC1089);西南科技大学博士基金项目“崩落—充填复合采场地压交互作用机理及调控方法”(21zx7157)
Research and Application of Cemented Filling Method to Sublevel Caving Method Under Soft Broken Rock Mass Condition
Received date: 2024-04-24
Revised date: 2024-07-12
Online published: 2024-09-19
金川集团龙首矿西二采区上部中段充填采场发生失稳事故后,采矿方法由下向分层进路式胶结充填法转为无底柱分段崩落法时,面临着软破矿岩条件下覆盖层形成和采场稳定性问题。采用数值计算和现场试验等方法,对这2个关键技术问题进行了研究。数值模拟结果表明,随着崩落法首采分段回采工作的进行,采场复合顶板经历了破坏裂纹萌生、零星散块冒落、拱形批量冒落和柱塞状整体冒落等阶段,当首采分段回采结束时,顶板复合岩层冒落能够为崩落法采场提供足够厚度的覆盖层,且在崩落法采动地压下软破矿岩采场能够保持稳定。现场工业试验表明,在崩落法采场首采分段采用“阶梯式退采均匀扩展采空区+总量控制出矿”的技术方案,能够安全、高效地形成覆盖层,并通过增补“钢拱架+钢筋网+锚杆”的技术方案,解决在崩落法采动地压下维持破碎矿岩采场稳定性的问题,为无底柱分段崩落法在西二采区的扩大应用奠定了技术基础。
鲁旭 , 谭宝会 , 龚臻 , 粟登峰 , 张刚刚 , 胡颖鹏 . 软破矿岩条件下胶结充填法转分段崩落法研究及应用[J]. 黄金科学技术, 2024 , 32(5) : 905 -915 . DOI: 10.11872/j.issn.1005-2518.2024.05.114
Following the instability incident in the upper middle section of the filling stope at the West No.2 mining area of Longshou mine in Jinchuan,the original downward-layered consolidated filling method was replaced with the non-pillar sublevel caving method.To investigate critical technical challenges,such as cover layer formation and stope stability associated with the practical application of this method,numerical simulation techniques were employed for the research.The research findings suggest that as the sublevel stope area within a caving stope expands,the composite roof experiences a sequence of progressive failure stages.These stages include the initiation of failure cracks,dispersed bulk caving,arch batch caving,and plunger integral caving.By the conclusion of the first sublevel mining,the height of the roof collapse is expected to exceed 30 meters,thereby forming a sufficiently thick cover layer for the caving method stope.Concurrently,during the mining process,plastic zones are generated on the surface of the roof along the mining approach.The support structure serves a critical function in anchoring and stabilizing the majority of the plastic zones,thereby contributing to the overall stability of the mining approach.Despite the minimal displacement observed in the access roof,there is a pronounced stress concentration within 5 meters behind the working face,necessitating continued attention.An industrial experiment was subsequently conducted on-site,employing the non-pillar sublevel caving method and utilizing induced caving technology to establish a cover layer.To mitigate the risk of large-scale collapse of the composite roof,a technical strategy involving“stepped mining and uniform expansion of goaf combined with total ore extraction control”was implemented on-site.Microseismic monitoring and on-site tracking data revealed that during the initial sublevel mining phase,the actual caving height of the roof in the mining area surpassed 20 meters,resulting in the formation of a thick cover layer approximately 30 meters thick,inclusive of the reserved ore layer.Throughout the entire mining process,the stope remained in a stable condition.To address the issue of significant damage to the access road in the fractured ore and rock zone,a comprehensive technical scheme incorporating multiple support structures was proposed.For the problem of medium and deep hole damage,a systematic approach involving hole inspection,hole dredging,and hole filling was established.Additionally,relevant equipment was promptly introduced to mitigate operational intensity and enhance the applicability of the non-pillar sublevel caving method under the soft,fractured ore and rock conditions prevalent in the Jinchuan mining area.
null | Chen Lie, Chen Xingming, Han Fangjian,2019.Application of improved AHP in optimization of mining methods[J].Industrial Minerals and Processing,48(7):1-5,8. |
null | Guo Huiwen, He Zhiliang, Zhang Zhigui,et al,2020.Influence analysis of stope structure parameters on the drift stability in non-pillar sublevel caving under backfill[J].Mining Research and Development,40(4):12-18. |
null | He Rongxing, Chen Liyuan, Ren Fengyu,2022.Study Status and development direction of loss and dilution in non-pillar sublevel caving method in China[J].Metal Mine,51(11):1-9. |
null | Li jielin, Gao Le, Yang Chengye,et al,2022.Numerical analysis of stability of large complex goaf group and prediction of hidden danger area[J].Gold Science and Technology,30(3):315-323. |
null | Li Nan, Ren Fengyu, Zhao Yunfeng,et al,2010.Study on the formation of overburden layer during the transition from open-pit to underground mining in Xiaowanggou iron mine[J].Metal Mine,39(12):9-11. |
null | Li Shenghui, Wang Lijie, Liu Zhiyi,et al,2021.Stability analysis and structural parameter optimization of test stope for complex broken ore deposit[J].Metal Mine,50(8):41-45. |
null | Lu Hongjian, Gan Deqing, Chen Chao,2014.Covering layer forming method during transition from open pit to underground in Xingshan iron mine[J].Metal Mine,43(1):25-28. |
null | Luo Jia, Liu Xiaosheng, Zhou Aimin,2016.Study on selection of roof caving method for high sublevel caving stope[J].Mining Research and Development,36(10):6-10. |
null | Su Huayou, Wang Yongding, Tan Baohui,et al,2022.Study on induced caving mechanism and development process of large area cemented backfill[J].Gold Science and Technology,30(5):713-723. |
null | Tan Baohui, Hu Yingpeng, Zhang Zhigui,et al,2022a.Development status and determination method and existing problems of stope structure parameters in sublevel caving without sill pillar[J].Industrial Minerals and Processing,51(11):52-64. |
null | Tan Baohui, Long Weiguo, Zhang Zhigui,et al,2022b.Study on high-efficiency caving method with low ore loss and dilution of orebody branch in Longshou mine[J].Mining Research and Development,42(7):7-13. |
null | Wu Aixiang, Han Bin, Liu Tongyou,et al,2003.Study on deformation an support of roadways in weak rockmass in Jinchuan mine[J].Chniese Journal of Rock Mechanics and Engineering,22(Supp.2):2595-2600. |
null | Wu Shuanjun, Zhang Zhigui, Wang Yongding,et al,2021.Application of induced caving technology in formation of overburden layer for caving mining method in Longshou mine[J].Mining Research and Development,41(10):14-21. |
null | Yao Daochun,2019.Study on the stability of underground mining stope of Datuanshan deposit[J].China Mine Engineering,48(6):1-5,19. |
null | Zhang Changsuo,2021.Optimization design of roadway support parameters for broken rock in an iron mine[J].China Mining Magazine,30(Supp.1):296-300. |
null | Zhang Zhigui, Chen Xingming, Ye Qing,et al,2015.Application of sublevel caving with larger parameters in gently inclined mid-thick ore-body[J].Metal Mine,44(8):1-5. |
null | Zhou Chaoqun,2021.Construction technology of roadway excavation in fault fracture zone of Beiminghe iron mine[J].Nonferrous Metals(Mining Section),73(1):1-4,27. |
null | 陈烈,陈星明,韩方建,2019.改进AHP在采矿方法优选中的应用[J].化工矿物与加工,48(7):1-5,8. |
null | 郭辉文,何治良,张志贵,等,2020.充填体下无底柱分段崩落法采场结构参数对回采进路稳定性影响分析[J].矿业研究与开发,40(4):12-18. |
null | 何荣兴,陈丽媛,任凤玉,2022.我国无底柱分段崩落法损失贫化研究现状及发展方向[J].金属矿山,51(11):1-9. |
null | 李杰林,高乐,杨承业,等,2022.大型复杂采空区群的稳定性数值分析及隐患区域预测[J].黄金科学技术,30(3):315-323. |
null | 李楠,任凤玉,赵云峰,等,2010.小汪沟铁矿露天转地下覆盖层形成方法研究[J].金属矿山,39(12):9-11. |
null | 李胜辉,王立杰,刘志义,等,2021.复杂破碎矿体试验采场稳定性分析及结构参数优化[J].金属矿山,50(8):41-45. |
null | 卢宏建,甘德清,陈超,2014.杏山铁矿露天转地下覆盖层形成方法[J].金属矿山,43(1):25-28. |
null | 罗佳,柳小胜,周爱民,2016.高分段无底柱崩落法放顶方法选择研究[J].矿业研究与开发,36(10):6-10. |
null | 苏华友,王永定,谭宝会,等,2022.大面积胶结充填体诱导冒落机理及其发展过程研究[J].黄金科学技术,30(5):713-723. |
null | 谭宝会,胡颖鹏,张志贵,等,2022a.无底柱分段崩落法采场结构参数:发展现状、确定方法及存在的问题[J].化工矿物与加工,51(11):52-64. |
null | 谭宝会,龙卫国,张志贵,等,2022b.龙首矿分支矿体崩落法高效低贫损回采研究[J].矿业研究与开发,42(7):7-13. |
null | 吴爱祥,韩斌,刘同有,等,2003.金川镍矿不良岩层巷道变形与支护研究[J].岩石力学与工程学报,22(增2):2595-2600. |
null | 武拴军,张志贵,王永定,等,2021.诱导冒落在龙首矿崩落法覆盖层形成中的应用[J].矿业研究与开发,41(10):14-21. |
null | 姚道春,2019.大团山矿床地下开采采场稳定性研究[J].中国矿山工程,48(6):1-5,19. |
null | 张长锁,2021.某铁矿破碎岩体巷道支护参数优化设计[J].中国矿业,30(增1):296-300. |
null | 张志贵,陈星明,叶青,等,2015.大结构参数无底柱分段崩落法在缓倾斜中厚矿体中的应用[J].金属矿山,44(8):1-5. |
null | 周超群,2021.北洺河铁矿断层破碎带区域巷道掘支施工技术[J].有色金属(矿山部分),73(1):1-4,27. |
/
〈 | 〉 |