收稿日期: 2024-04-15
修回日期: 2024-07-24
网络出版日期: 2024-09-19
基金资助
国家“十四五”重点研发计划项目“大范围含水土质埋压人员高效搜索系统研究”(2021YFC3090401)
Study on Shear Strength and Meso-structure Characteristics of Qinwang-chuan Loess Under Different Water Content
Received date: 2024-04-15
Revised date: 2024-07-24
Online published: 2024-09-19
为研究不同含水率下黄土的抗剪强度和细观结构特征,以秦王川重塑黄土为研究对象,利用四联自动直剪仪和核磁共振仪进行了直剪和核磁共振试验。试验结果表明:秦王川黄土重塑土的总体抗剪强度随含水率的增大而降低,黏聚力随含水率的增大呈先增大后减小的变化趋势,内摩擦角呈先减小后增大再减小的变化趋势;含水率变化对土体黏聚力的影响较大,而对内摩擦角的影响较小;土样内部孔隙率随含水率的增大而增大,水分不断从小尺寸孔隙向中大尺寸孔隙扩散,且土体内部的小尺寸孔隙有不断扩展和贯通的趋势;随着含水率的增大,土样的延性和塑性也得到增强,应力—应变曲线特征由应变软化转变为应变硬化;随着含水率的增大,土样内部水分的形态也逐渐变化,由强结合水主导不断向弱结合水主导发展,最后变成自由水主导,导致土颗粒之间的胶结作用力、水膜作用力以及基质吸力减弱,进而导致土样总体抗剪强度降低。本研究成果可为地区黄土工程建设提供数据支持和理论参考。
李杰林 , 李大千 , 杨承业 , 张童 . 不同含水率下秦王川黄土抗剪强度与细观结构特征研究[J]. 黄金科学技术, 2024 , 32(5) : 860 -870 . DOI: 10.11872/j.issn.1005-2518.2024.05.102
This study investigates the shear strength characteristics of loess under varying water content,with a specific focus on loess from Gansu Province.Through direct shear experiments and nuclear magnetic resonance tests,the research reveals the impact of water content on the shear strength of loess and its underlying microscopic mechanisms.The experimental findings indicate that increasing water content results in elevated internal porosity,an initial increase followed by a decrease in cohesion force,a reduction in the internal friction angle,and enhanced ductility of the soil samples.The mechanism underlying this change involves the alteration in water binding mode,matrix suction,and the degree of cementation between particles due to increased water content.When the initial water content of the soil sample is low,an increase in water content leads to the thickening of the strongly bound water film between particles,thereby enhancing the cementation effect and generating matrix suction,which in turn increases cohesion force.Concurrently,the lubrication of particles by water results in a reduction of the internal friction angle.When the optimal water content is surpassed,the soil sample exhibits a progressive expansion of cracks,an increase in the free water between particles,and a subsequent weakening of the cementation between particles and the matrix suction.This leads to a reduction in cohesion force and an increase in the internal friction angle due to the expansion of soil particles.Finally,when the water content approaches the liquid limit of the soil sample,the soil particles become obstructed by free water,leading to a reduction in the water film force between particles and rendering the cementation effect ineffective.Consequently,the matric suction is reduced to zero,resulting in cohesion approaching zero.Additionally,the occluding force between particles diminishes,causing a further decrease in the internal friction angle.This study also employed nuclear magnetic resonance (NMR) testing to further analyze the microstructural changes and internal water distribution within the loess.The experimental results indicated that an increase in water content led to a significant rise in the main peak of the NMR transverse relaxation time (T2) spectral distribution.Additionally,the second wave peak exhibited a pronounced rightward shift,suggesting that water infiltrated the smaller pores.Furthermore,the small-sized pores within the soil appeared to expand and merge into medium-sized pores.The proportion of various pore types in soil samples under different water content conditions was also quantified through calculations.The findings indicate that an increase in water content leads to a reduction in the proportion of micropores within the soil,while the proportion of macropores increases,thereby enhancing the overall porosity of the loess soil sample.This phenomenon also contributes to the further diminution of the shear strength of the loess samples.
null | Chen Jiayu, Liu Zhikui,2019.Effect of moisture content and dry density on shear strength of Guilin red clay[J].Carsologica Sinica,38(6):930-936. |
null | Chen L J, Peng J B, Xie F,et al,2022.Effect of moisture content on the time-dependent mechanical characteristics of loess[J].Environmental Earth Sciences,81(7):68-73. |
null | Chen P, Jia S G, Wei X Q,et al,2023.Hydraulic path dependence of shear strength for compacted loess[J].Journal of Rock Mechanics and Geotechnical Engineering,15(7):1872-1882. |
null | Gu T F, Wang J D, Wang C X,et al,2019.Experimental study of the shear strength of soil from the Heifangtai platform of the Loess Plateau of China[J].Soils Sediments,19(10):3463-3475. |
null | He Pan, Xu Qiang, Liu Jialiang,et al,2020.Experimental study on the effect of combined water content on shear strength of remolded loess based on NMR[J].Mountain Resea-rch,38(4):571-580. |
null | He X B, Tang K L, Zhang X B,2004.Soil erosion dynamics on the Chinese Loess Plateau in the last 10 000 years[J].Mo-untain Research and Development,24(4):342-347. |
null | Lei Haonan,2021.Research for Loess Shear Surface Characteristics and Influencing Factors of Shear Strength[D].Xi’an:Chang’an University. |
null | Li Y R,2018.A review of shear and tensile strengths of the Malan loess in China[J].Engineering Geology,236:4-10. |
null | Lian B Q, Peng J B, Wang X G,et al,2020.Moisture content effect on the ring shear characteristics of slip zone loess at high shearing rates[J].Bulletin of Engineering Geology and the Environment,79(2):999-1008. |
null | Lu Zhaojun,1999.Problems on the research of shear strength of clayey soils[J].China Civil Engineering Journal,32(4):3-9. |
null | Nan J J, Peng J B, Zhu F J,et al,2021.Shear behavior and microstructural variation in loess from the Yan’an area China[J].Engineering Geology,280:105964. |
null | Pang Xuqing, Hu Zaiqiang, Li Hongru,et al,2016.Structure damage evolution and mechanical properties of loess by CT-triaxial test[J].Journal of Hydraulic Engineering,47(2):180-188. |
null | Peng J B, Sun P, Ogbonnaya I,2018.Loess caves,a special kind of geo-hazard on Loess Plateau,northwestern China[J].Engineering Geology,236:79-88. |
null | Shao X X, Zhang H Y, Tan Y,et al,2018.Collapse behavior and microstructural alteration of remolded loess under graded wetting tests[J].Engineering Geology,233:11-22. |
null | Tian W T, Dong J H, Sun J J,et al,2021.Experimental study on main physical parameters controlling shear strength of unsaturated loess[J].Advances in Civil Engineering,2021:6652210. |
null | Wang H M, Ni W K, Li X N,et al,2022.Predicting the pore size distribution curve based on the evolution mechanism of soil-water characteristic curve[J].Environmental Earth Sci-ences,81(1):23. |
null | Wang Wanping, Zhang Xiyin, Wang Yi,et al,2022.Variation characteristics and influencing factors of loess shear strength in seasonal frozen soil region[J].Journal of Harbin Institute of Technology,54(8):143-150. |
null | Wang Zhixin, Li Xin, Wei Yangxu,et al,2015.NMR technologies for evaluating oil & gas shale:A review[J].Chinese Journal of Magnetic Resonance,32(4):688-698. |
null | Wu Lianbo,2024.Quantitative relationship between shale NMR transverse relaxation time and pore size distribution and its application[J].Petroleum Geology and Recovery Efficiency,31(1):36-43. |
null | Wu Xuyang, Ren Mingyang, Huang Junjie,et al,2022.Freeze-thaw characteristic and attenuation model of tensile strength of Lanzhou remolded loess based on the axial splitting method[J].China Earth Quake Engineering Journal,44(5):1041-1049,1058. |
null | Wu Y M, Lan H X, Huan W Q,et al,2021.Relationship between wave velocities and water content of unsaturated loess[J].Chinese Journal of Geophysics-Chinese Edition,64(10):3766-3773. |
null | Xing Xianli, Li Tonglu, Li Ping,et al,2014.Variation regularities of loess shear strength with the moisture content [J].Hydrogeology and Engineering Geology,41(3):53-59,97. |
null | Xu X Z, Liu Z Y, Xiao P Q,et al,2015.Gravity erosion on the steep loess slope:Behavior,trigger and sensitivity[J].Catena,135:231-239. |
null | Yang H, Xie W L, Liu Q Q,et al,2022.Three-stage collapsibility evolution of Malan loess in the Loess Plateau [J].Catena,217:106482. |
null | Yuan Z K, Ni W K, Lü X F,et al,2022.Effect of water distribution on shear strength of compacted loess[J].Geomechanics and Engineering,31(5):519-527. |
null | Zhang G, Hu Y, Wang L P,2015.Behaviour and mechanism of failure process of soil slopes[J].Environmental Earth Sciences,73(4):1701-1713. |
null | Zhao Jingbo, Chen Yun,1994.Study on pores and collapsibility of loess[J].Journal of Engineering Geology,2(2):76-83. |
null | Zhao Minghua, Liu Xiaoping, Peng Wenxiang,2007.Application of aqueous film theory to study of unsaturated soil’s suction[J].Rock and Soil Mechanics,28(7):1323-1327. |
null | Zheng P L, Wang J G, Wu Z H,et al,2022.Effect of water content variation on the tensile characteristic of clayey loess in Ili valley,China[J].Applied Sciences,12(17):12178470. |
null | Zhong Z L, Liu Y X, Liu X R,et al,2015.Influence of moisture content on shearing strength of unsaturated undisturbed quaternary system middle pleistocene[J].Journal of Central South University,22(7):2776-2782. |
null | 陈佳雨,刘之葵,2019.含水率及干密度对桂林红黏土抗剪强度的影响[J].中国岩溶,38(6):930-936. |
null | 何攀,许强,刘佳良,等,2020.基于核磁共振技术的结合水含量对重塑黄土抗剪强度影响试验研究[J].山地学报,38(4):571-580. |
null | 雷昊楠,2021.黄土剪切面特征及抗剪强度影响因素试验研究[D].西安:长安大学. |
null | 卢肇钧,1999.粘性土抗剪强度研究的现状与展望[J].土木工程学报,32(4):3-9. |
null | 庞旭卿,胡再强,李宏儒,等,2016.黄土剪切损伤演化及其力学特性的CT三轴试验研究[J].水利学报,47(2):180-188. |
null | 王万平,张熙胤,王义,等,2022.季节冻土区黄土抗剪强度变化特征及其影响因素[J].哈尔滨工业大学学报,54(8):143-150. |
null | 王志新,李新,魏杨旭,等,2015.页岩油气层核磁共振评价技术综述[J].波谱学杂志,32(4):688-698. |
null | 吴连波,2024.页岩核磁共振横向弛豫时间与孔径分布量化关系及应用[J].油气地质与采收率,31(1):36-43. |
null | 吴旭阳,任明洋,黄俊杰,等,2022.兰州重塑黄土抗拉强度冻融特性与衰减模型研究——基于轴向压裂法[J].地震工程学报,44(5):1041-1049,1058. |
null | 邢鲜丽,李同录,李萍,等,2014.黄土抗剪强度与含水率的变化规律[J].水文地质工程地质,41(3):53-59,97. |
null | 赵景波,陈云,1994.黄土的孔隙与湿陷性研究[J].工程地质学报,2(2):76-83. |
null | 赵明华,刘小平,彭文祥,2007.水膜理论在非饱和土中吸力的应用研究[J].岩土力学,28(7):1323-1327. |
/
〈 | 〉 |