收稿日期: 2024-03-26
修回日期: 2024-04-08
网络出版日期: 2024-08-27
基金资助
“十四五”重点研发计划项目“特大型多金属资源高通量分选关键技术与装备”(2022YFC2904602);广西重点研发计划“复杂地表环境下地下矿山开采岩移规律及低沉降充填开采技术研究”(2022AB31023)
Auxilliary Calibration Method for Microscopic Parameters of PFC Based on SVR
Received date: 2024-03-26
Revised date: 2024-04-08
Online published: 2024-08-27
PFC数值模拟所需的微观参数通常通过人工试算的方式进行标定,该方法受标定人员经验的影响,效率较低,难以快速处理大量岩石试件。以平行黏结模型为例,建立微观参数正交试验表并进行数值模拟,以此为样本分别使用支持向量回归机(SVR)和BP神经网络模型进行训练,对室内测得的宏观参数进行预测,得到的微观参数进行数值模拟分析预测效果,若效果不佳则将模拟数据加入样本继续训练直至获得理想的结果。研究表明:利用数值模拟和机器学习相结合的正反演方法,可以高效标定微观参数,其中BP神经网络模型需要试算7次,而支持向量机模型仅需试算3次,标定效率更高。因此,基于正反演结合的SVR微观参数辅助标定方法不仅效率高、可重复性强、不受标定人员经验影响,而且适用于批量试件的标定工作。
温晨 , 黄敏 , 邱贤阳 , 黄帅 . 基于SVR的PFC微观参数辅助标定方法研究[J]. 黄金科学技术, 2024 , 32(4) : 675 -684 . DOI: 10.11872/j.issn.1005-2518.2024.04.006
In numerical simulation studies utilizing the Particle Flow Code (PFC),the direct acquisition of microscopic parameters of discrete particles through experimental means presents a significant challenge.Traditionally,manual trial-and-error techniques are utilized,involving continuous adjustments of microscopic parameters to observe the corresponding effects on macroscopic mechanical parameters within the simulation.This iterative process is characterized by its randomness and lack of systematic approach,heavily reliant on the expertise of the calibrator,ultimately leading to diminished calibration efficiency and reproducibility.This challenge is particularly evident when calibrating microscopic parameters for extensive quantities of rock samples,requiring substantial manual labor and repetitive tasks.In order to mitigate these issues,a novel approach for calibrating microscopic parameters is essential,one that is not reliant on the calibrator’s skill level and ensures consistent reproducibility in the calibration of rock specimen parameters on a large scale.Utilizing the parallel bond model as a case study,an orthogonal experimental design table was constructed to investigate microscopic parameters,followed by numerical simulations to generate a comprehensive small-sample dataset.Support vector regression (SVR) and back propagation(BP) neural network models were separately trained on this dataset.This approach involves utilizing macroscopic parameters derived from PFC numerical simulations as the forward process,with machine learning techniques employed to predict microscopic parameters as the inverse process.If the prediction error for the macroscopic parameters measured in the laboratory is deemed inadequate,the corresponding microscopic parameters and their resultant macroscopic parameters are incorporated into the dataset for additional training until the desired outcome is attained.Studies have shown that utilizing machine learning with small-sample data,in conjunction with forward and inverse modeling,can effectively calibrate parameters.In particular,the BP model required 7 iterations,whereas the SVR model only needed 3 iterations to attain satisfactory outcomes,showcasing superior calibration efficiency.In scenarios involving numerous and highly nonlinear macro-micro parameters,the utilization of machine learning-assisted calibration presents notable benefits over traditional manual trial-and-error approaches,including enhanced efficiency,increased reproducibility,and improved generalizability.
null | Abi E D, Zheng Yingren, Feng Xiating,et al,2018.Relationship between particle micro and macro mechanical parameters of parallel-bond model [J].Rock and Soil Mechanics,39(4):1289-1301. |
null | Benvenuti L, Kloss C, Pirker S,2016.Identification of DEM simulation parameters by artificial neural networks and bulk experiments[J].Powder technology,291:456-465. |
null | Chen Pengyu, Kong Ying, Yu Hongming,2018.Research on the calibration method of microparameters of a uniaxial compression PFC2D model for rock[J].Chinese Journal of Underground Space and Engineering,14(5):1240-1249. |
null | Cundall P A, Strack O D L,1979.A discrete numerical model for granular assembles[J].Geotechnique,29(1):47-65. |
null | Cundall P A,1971.The Measurement and Analysis of Acceleration in Rock Slopes[D].London:Imperial College of Science and Technology. |
null | Deng Shuxin, Zheng Yonglai, Feng Lipo,et al,2019.Application of design of experiments in microscopic parameter calibration for hard rocks of PFC3D model[J].Chinese Journal of Geotechnical Engineering,41(4):655-664. |
null | Feng Haotian, Chen Junzhi, Ren Chunfang,et al,2022.Study on calibration method of cemented structure plane parameters in numerical test[J].Chinese Journal of Underground Space and Engineering,18(6):1824-1833. |
null | Feng Xiating, Zhang Zhiqiang, Yang Chengxiang,et al,1999.Study on genetic-neural network method of displacement back analysis [J].Chinese Journal of Rock Mechanics and Engineering,18(5):529-533. |
null | Huang Yisheng, Xia Xiaodan,2021.Calibration method of mesoscopic parameters for parallel bonding model of sandstone particle flow[J].Journal of China Three Gorges University(Natural Sciences),43(4):7-12. |
null | Jiang Mingjing, Fang Wei, Sima Jun,2015.Calibration of micro-parameters of parallel bonded model for rocks[J].Journal of Shandong University(Engineering Science),45(4):50-56. |
null | Jiang Yue, Zhou Wendong,2023.A study on the correlation of macro and microstructural parameters of hollow cylindrical grey sandstone based on PFC 3D[J/OL].Coal Science and Technology,1-13[2024-08-15].. |
null | Potyondy D O,2018.Material-Modeling Support in PFC[M].Minneapolis:ITASCA. |
null | Potyondy D O, Cundall P A,2004.A bonded-particle model for rock[J].International Journal of Rock Mechanics and Mining Sciences,41(8):1329-1364. |
null | Ren Junqing, Xiao Ming, Liu Guoqing,2023.Lightweight analysis method for rock macro-meso parameters based on improved BP algorithm[J].Journal of Hunan University(Natural Sciences),50(9):207-218. |
null | Wang Hongbo, Ma Zhe,Wulantuya,et al,2022.Calibration method of mesoscopic parameters using BP neural network and Burgers model[J].Transactions of the Chinese Society of Agricultural Engineering,38(23):152-161. |
null | Wang Zhaoyang, Lin Peng, Xu Zhenhao,et al,2022.A transversely isotropic rocks integrated microparameter calibration method for flat joint model and smooth joint model[J].Journal of Central South University (Science and Technology),53(6):2211-2223. |
null | Wu Changyou,2007.The Research and Application on Nerual Network[D].Harbin:Northeast Agricultural University. |
null | Wu Luyuan, Zhu Yongheng, Bai Haibo,et al,2023.Study on the correlation of macro and meso parameters of parallel bond model sandstone[J].Journal of Mining Science and Technology,8(4):487-501. |
null | Zhao Guoyan, Dai Bing, Ma Chi,2012.Study of effects of microparameters on macroproperties for parallel bonded model [J].Chinese Journal of Rock Mechanics and Engineering,31(7):1491-1498. |
null | Zhong Weiliang, Ding Hao, Fan Lifeng,2023.Research on mesoscopic parameters calibration of geopolymer concrete upon BP neural network[J/OL].Engineering Mechanics,1-10[2024-08-15].. |
null | Zhou Xiaopeng, Xu Qiang, Zhao Kuanyao,et al,2020.Research on calibration method of discrete element mesoscopic parameters based on neural network landslide in Heifangtai,Gansu as an example[J].Chinese Journal of Rock Mechanics and Engineering,39(Supp.1):2837-2847. |
null | 阿比尔的,郑颖人,冯夏庭,等,2018.平行黏结模型宏细观力学参数相关性研究[J].岩土力学,39(4):1289-1301. |
null | 陈鹏宇,孔莹,余宏明,2018.岩石单轴压缩PFC2D模型细观参数标定研究[J].地下空间与工程学报,14(5):1240-1249. |
null | 邓树新,郑永来,冯利坡,等,2019.试验设计法在硬岩PFC3D模型细观参数标定中的应用[J].岩土工程学报,41(4):655-664. |
null | 冯豪天,陈俊智,任春芳,等,2022.数值试验中胶结结构面参数标定方法的研究[J].地下空间与工程学报,18(6):1824-1833. |
null | 冯夏庭,张治强,杨成祥,等,1999.位移反分析的进化神经网络方法研究[J].岩石力学与工程学报,18(5):529-533. |
null | 黄宜胜,夏晓丹,2021.砂岩颗粒流平行黏结模型细观参数标定方法研究[J].三峡大学学报(自然科学版),43(4):7-12. |
null | 姜玥,邹文栋,2023.基于PFC3D的空心圆柱灰砂岩宏细观参数相关性研究[J/OL].煤炭科学技术,1-13[2024-08-15].. |
null | 蒋明镜,方威,司马军,2015.模拟岩石的平行黏结模型微观参数标定[J].山东大学学报(工学版),45(4):50-56. |
null | 任俊卿,肖明,刘国庆,2023.基于改进BP算法的岩石宏细观参数轻量化分析方法[J].湖南大学学报(自然科学版),50(9):207-218. |
null | 王朝阳,林鹏,许振浩,等,2022.横观各向同性岩体平直—光滑节理双模型细观参数联合标定方法[J].中南大学学报(自然科学版),53(6):2211-2223. |
null | 王洪波,马哲,乌兰图雅,等,2022.采用BP神经网络和Burgers模型的细观参数标定[J].农业工程学报,38(23):152-161. |
null | 吴昌友,2007.神经网络的研究及应用[D].哈尔滨:东北农业大学. |
null | 吴禄源,朱永恒,白海波,等,2023.砂岩颗粒流平行黏结模型宏细观参数关联性研究[J].矿业科学学报,8(4):487-501. |
null | 赵国彦,戴兵,马驰,2012.平行黏结模型中细观参数对宏观特性影响研究[J].岩石力学与工程学报,31(7):1491-1498. |
null | 钟惟亮,丁昊,范立峰,2023.基于BP神经网络的地聚物混凝土细观参数标定研究[J/OL].工程力学,1-10[2024-08-15].. |
null | 周小棚,许强,赵宽耀,等,2020.基于神经网络的离散元细观参数标定方法研究——以甘肃黑方台黄土滑坡为例[J].岩石力学与工程学报,39(增1):2837-2847. |
/
〈 | 〉 |