img

QQ群聊

img

官方微信

  • CN 62-1112/TF 
  • ISSN 1005-2518 
  • 创刊于1988年
高级检索
采选技术与矿山管理

基于PSO-XGBoost的露天矿山PPV预测模型研究

  • 李振阳 ,
  • 张宝岗 ,
  • 熊信 ,
  • 杨承业 ,
  • 白玉奇
展开
  • 1.北京奥信化工科技发展有限责任公司,北京 100040
    2.中南大学资源与安全工程学院,湖南 长沙 410083
李振阳(1993-),男,河北邯郸人,工程师,从事金属矿床开采及爆破工艺研究工作。735424518@qq.com

收稿日期: 2024-01-11

  修回日期: 2024-06-04

  网络出版日期: 2024-08-27

基金资助

中南大学研究生自主探索创新项目“矿山多装备智能体协同调度优化及孪生仿真研究”(1053320220742)

Research on PPV Prediction Model of Open-pit Mine Based on PSO-XGBoost

  • Zhenyang LI ,
  • Baogang ZHANG ,
  • Xin XIONG ,
  • Chengye YANG ,
  • Yuqi BAI
Expand
  • 1.Beijing Aoxin Chemical Technology Co. , Ltd. , Beijing 100040, China
    2.School of Resources and Safety Engineering, Central South University, Changsha 410083, Hunan, China

Received date: 2024-01-11

  Revised date: 2024-06-04

  Online published: 2024-08-27

摘要

爆破振动的质点峰值速度(Peak Particle Velocity,PPV)是评估爆破开采设计参数合理性的重要指标。为实现一种PPV有效预测模型,借助粒子群优化算法(Particle Swarm Optimization,PSO),结合优化极端梯度提升树(Extreme gradient boosting,XGBoost),构建了一种参数自优化的PSO-XGBoost预测模型。以LK露天铜钴矿为研究对象,选取最大单段炸药量、总炸药量、测量的爆心距、炮孔平均进深尺度和高程差共5个影响因素指标作为研究参数,通过现场收集187次爆破作业实测数据,进一步开展PPV的PSO-XGBoost预测研究,并与传统XGBoost模型、SSA-XGBoost优化模型及萨道夫斯基经验公式的PPV回归预测进行对比分析,最后利用Shapley Additive Explanatory(SHAP)方法开展影响PPV预测结果的敏感性因素分析。结果表明:PSO-XGBoost预测模型的预测评价指标计算结果最优(R2=0.921,RMSE=0.0752,MAE=0.0717,MBE=0.0683),其对PPV的预测结果明显优于传统XGBoost模型、SSA-XGBoost混合优化模型及萨道夫斯基经验公式,同时,敏感性分析得到总炸药用量是影响PPV预测结果的重要参数。进一步说明PSO-XGBoost预测模型可处理多因素的非线性特征,利用PSO-XGBoost预测模型能够更好地结合非线性、离散数据,建立一种可靠、简单有效的PPV预测模型。研究结果可为露天矿山爆破振动快速预测提供参考。

本文引用格式

李振阳 , 张宝岗 , 熊信 , 杨承业 , 白玉奇 . 基于PSO-XGBoost的露天矿山PPV预测模型研究[J]. 黄金科学技术, 2024 , 32(4) : 620 -630 . DOI: 10.11872/j.issn.1005-2518.2024.04.022

Abstract

The peak particle velocity(PPV) resulting from blasting vibration serves as a crucial metric in assessing the efficacy of blasting and mining design parameters.To enhance the accuracy of PPV predictions,a novel parameter self-optimizing PSO-XGBoost prediction model is introduced,leveraging the Particle Swarm Optimization (PSO) algorithm in conjunction with optimized Extreme Gradient Boosting (XGBoost).The research focuses on the LK open-pit copper-cobalt mine and examines five influencing factors,namely the maximum single explosive charge,total explosive charge,measured distance to blast center,average depth of blastholes,and elevation difference,as study parameters.A total of 187 sets of measured data from on-site blasting operations are gathered for further investigation into predicting PPV using the PSO-XGBoost model.The findings indicate that the PSO-XGBoost prediction model produces superior prediction evaluation metrics (R2=0.921,RMSE=0.0752,MAE=0.0717,MBE=0.0683), compared to alternative models,including the traditional XGBoost model,the SSA-XGBoost hybrid optimization model,and the Sariakaliski empirical formula.The sensitivity analysis reveals that the total explosive charge,significantly influences PPV prediction outcomes,underscoring the importance of using an appropriate amount of explosives to avoid energy inefficiency in blasting activities. Furthermore,the research demonstrates that the PSO-XGBoost prediction model,is capable of effectively addressing the nonlinear attributes of various factors,as well as integrating nonlinear and discrete data to develop a dependable,straightforward,and efficient PPV prediction model.This study offers valuable insights for promptly predicting blasting vibration in open-pit mining and assessing the impacts of blasting activities.

参考文献

null Deng Hongwei, Luo Liang,2023.PPV prediction model based on random forest optimized by SMA algorithm[J].Gold Science and Technology,31(4):624-634.
null Dong Donglin, Zhang Longqiang, Zhang Enyu,et al,2023.A rapid identification model of mine water inrush based on PSO-XGBoost[J].Coal Science and Technology,51(7):72-82.
null Fan Yong, Pei Yong, Yang Guangdong,et al,2022.Prediction of blasting vibration velocity peak based on an improved PSO-BP neural network[J].Journal of Vibration and Shock,41(16):194-200.
null Gou Qianqian, Zhao Mingsheng, Chi En’an,et al,2018.Prediction and application of evaluation factors in blasting vibration based on PCA-BP neural network[J].Mining Research and Development,38(12):97-102.
null Guo Xiaoqiang,2021.Study on the determination of the limit distance of boundary borehole based on blasting vibration[J].Mining Research and Development,41(6):26-30.
null He Li, Liu Yihe, Li Linna,et al,2022.Prediction of mine Blasting vibration velocity of mines based on particle swarm -least square support vector machine model[J].Metal Mines,51(7):145-150.
null Hong Z X, Tao M, Liu L L,et al,2023.An intelligent approach for predicting overbreak in underground blasting operation based on an optimized XGBoost model[J].Engineering Applications of Artificial Intelligence,126(2):1-16.
null Hu Xiaobing, Chen Zhiyuan, Wei Geping,et al,2020.Blasting vibration prediction system based on BP neural network[J].Mining Research and Development,40(9):154-158.
null Khandelwal M, Armaghani D J, Faradonbeh R S,et al,2017.Classification and regression tree technique in estimating peak particle velocity caused by blasting[J].Engineering with Computers,33:45-53.
null Li D T, Yan J L, Zhang L,2012.Prediction of blast-induced ground vibration using support vector machine by tunnel excavation[J].Applied Mechanics and Materials,170/171/172/173:1414-1418.
null Ma C L, Wang W H, Wang S X,et al,2023.Prediction of shear strength of RC slender beams based on interpretable machine learning[J].Structures,57:105171.
null Sadovsky M A,1952.Mechanical action of blast waves on data of experimental studies[J].Physics of Explosion,12(1):70-110.
null Shi Chunyu, Zhang Zhihong, Zhou Jie,et al,2023.Study on blasting vibration transmission characteristics of rock mass of structural planes with different angles [J].Mining Research and Development,43(5):184-189.
null Shirani Faradonbeh R, Jahed Armaghani D, Abd Majid M Z,et al,2016.Prediction of ground vibration due to quarry blasting based on gene expression programming:A new model for peak particle velocity prediction[J].International Journal of Environmental Science and Technology,13(6):1453-1464.
null Trabi B, Bleibinhaus F,2023.Blast vibration prediction[J].Geophysical Prospecting,71(7):1312-1324.
null Tyagi P, Sharma A, Semwal R,et al,2023.XGBoost odor prediction model:Finding the structure-odor relationship of odorant molecules using the extreme gradient boosting algorithm[J].Journal of Biomolecular Structure and Dynamics,12(2):1-15.
null Wang Ziyi, Wu Guiyi, Luo Chang,et al,2023.Study on vibration response and stability of steep slope under multiple blasting vibration[J].Blasting,40(3):158-169.
null Xu Xiangdong, Lu Yu,2023.Study on empirical formula of blasting vibration propagation reflecting the influence of height difference[J].Automation and Instrumentation,(6):63-66.
null Xuan G Q, Wu X Y,2023.Support vector regression optimized by black widow optimization algorithm combining with feature selection by MARS for mining blast vibration prediction[J].Measurement,218:113106.
null Yu Z, Li C Q, Zhou J,2023.Tunnel boring machine performance prediction using supervised learning method and swarm intelligence algorithm[J].Mathematics,11(20):4237.
null Zeng Xiaohui, Zhang Xuemin, Dai Bin,et al,2023.Prediction of tunnel blasting vibration velocity considering influence of number of free surfaces and resistance line[J].China Work Safety Science and Technology,19(6):83-89.
null Zhang Xiliang,2020.Ensemble Learning Model and Engineering Application of Environmental Effect Prediction of Rock Mass Blasting[D].Hefei:University of Science and Technology of China.
null Zhou J, Qiu Y G, Khandelwal M,et al,2021.Developing a hybrid model of Jaya algorithm-based extreme gradient boosting machine to estimate blast-induced ground vibrations[J].International Journal of Rock Mechanics and Mining Sciences,145(1):104856.
null Zou Ping, Wang Liang, Dai Yong,et al,2023.Establishment and application of blasting vibration prediction system based on SSA-XGBoost [J].Blasting,40(3):199-205.
null 邓红卫,罗亮,2023.基于SMA算法优化随机森林的PPV预测模型[J].黄金科学技术,31(4):624-634.
null 董东林,张陇强,张恩雨,等,2023.基于PSO-XGBoost的矿井突水水源快速判识模型[J].煤炭科学技术,51(7):72-82.
null 范勇,裴勇,杨广栋,等,2022.基于改进 PSO-BP 神经网络的爆破振动速度峰值预测[J].振动与冲击,41(16):194-200.
null 苟倩倩,赵明生,池恩安,等,2018.基于PCA-BP神经网络在爆破振动评价要素中的预测及应用[J].矿业研究与开发,38(12):97-102.
null 郭晓强,2021.基于爆破振动的极限边孔排距的确定方法研究[J].矿业研究与开发,41(6):26-30.
null 何理,刘易和,李琳娜,等,2022.基于粒子群—最小二乘支持向量机模型的矿山爆破振动速度预测[J].金属矿山,51(7):145-150.
null 胡晓冰,陈志远,魏格平,等,2020.基于BP神经网络的爆破振动预测系统[J].矿业研究与开发,40(9):154-158.
null 史春宇,张志鸿,周杰,等,2023.不同角度结构面岩体的爆破振动传播特性研究[J].矿业研究与开发,43(5):184-189.
null 王子一,吴桂义,罗畅,等,2023.多次爆破振动下陡边坡振动响应及稳定性研究[J].爆破,40(3):158-169.
null 徐向东,陆瑜,2023.反映高差影响的爆破振动传播经验公式研究[J].自动化与仪器仪表,(6):63-66.
null 曾晓辉,张学民,戴斌,等,2023.考虑自由面数量和抵抗线影响的隧道爆破振速预测[J].中国安全生产科学技术,19(6):83-89.
null 张西良,2020.岩体爆破环境效应预测的集成学习模型及工程应用[D].合肥:中国科学技术大学.
null 邹平,王亮,戴勇,等,2023.基于SSA-XGBoost的爆破振动预测系统的构建与应用[J].爆破,40(3):199-205.
文章导航

/