收稿日期: 2023-12-27
修回日期: 2024-02-29
网络出版日期: 2024-05-21
基金资助
国家自然科学基金项目“移动环境中非局部扩散自由边界问题的传播动力学”(11901264)
Effect of Uncoupled Charge Coefficients on Rock Blast Damage
Received date: 2023-12-27
Revised date: 2024-02-29
Online published: 2024-05-21
在爆破工程中,选择合适的装药结构能够有效提高炸药利用率,从而改善爆破效果。基于RHT(Riedel-Hiermaier-Thomamodel)动态响应力学关系,采用ANSYS/LS-DYNA软件研究了偏心不耦合装药条件下不耦合系数K对岩体爆破荷载的影响,以及爆破过程中岩体的损伤情况。通过建立单孔偏心不耦合爆破模型,分析了不耦合系数K为1.0、1.5、2.0、2.5、3.0和3.5条件下的有效应力、振动速度、爆破地震波能量和损伤状况。同时,研究了不同不耦合系数K条件下爆心距(l)与损伤度(D)、质点振动速度(PPV)与爆心距(l),以及振动速度(vpp)与损伤度(D)之间的关系。结果表明:随着不耦合系数K的增大,耦合侧与不耦合侧有效应力和峰值振动速度、地震波峰值能量略微减小;粉碎区和裂隙区范围逐渐减小,且粉碎区损伤半径较裂隙区减小速率更大。岩体损伤程度和质点振动速度(vpp)均随着爆心距的增大而逐渐减小。质点振动速度越大损伤程度也越大,当vpp=50.4 cm/s时,岩体中的损伤变量达到损伤破坏阈值(D=0.19);当vpp>140.6 cm/s时,损伤度D>0.80。
梁瑞 , 曹晓睿 , 周文海 , 楼晓明 , 胡才智 , 王树江 . 不耦合装药系数对岩体爆破损伤的影响[J]. 黄金科学技术, 2024 , 32(2) : 306 -317 . DOI: 10.11872/j.issn.1005-2518.2024.02.008
A suitable charging structure in blasting engineering can effectively improve the utilization rate of explosives and thus improve the blasting effect.Based on the RHT(Riedel-Hiermaier-Thomamodel)dynamic response mechanics relationship,ANSYS/LS-DYNA software was used to study the effect of the uncoupling coefficient K on the blasting load of rock body under the condition of eccentric uncoupled charge and the damage of rock body during blasting.The effective stress,vibration velocity,seismic wave energy and damage conditions under uncoupling coefficients K=1.0,1.5,2.0,2.5,3.0 and 3.5 were analyzed by establishing a single-hole eccentric uncoupled blasting model.In addition,the relationship between burst center distance l and damage degree D,mass vibration velocity PPV and burst center distance l,and vibration velocity vpp and damage degree D under different conditions of uncoupling coefficients K were investigated.The results show that with the increase of the uncoupling coefficient K,the effective stress and peak vibration velocity of the coupled and uncoupled sides and the peak energy of the seismic wave decreases slightly.The range of the crushed zone and the fracture zone decreases gradually,and the radius of the damage in the crushed zone is larger than the rate of decrease in the fracture zone.The damage degree of rock body and the mass vibration velocity vpp are gradually reduced with the increase in the burst center distance. The greater the particle vibration velocity vpp is,the larger the damage degree is.When vpp reached 50.4 cm/s, the damage variable D in the rock body reached the damage failure threshold of 0.19.When vpp>140.6 cm/s,the damage degree D>0.80.
null | Bao Juan,2023. Study on Dynamic Response and Blasting Characteristics of Deep Rock Blasting [D].Lanzhou:Lanzhou University of Technology. |
null | Blasting Group of Construction Committee of China Water Resources Society,1995. technical specification for rock foundation excavation of hydraulic buildings [S].Beijing:Water Conservancy and Electric Power Press. |
null | Chen Xiaolin, Zhang Zhiyu, Wang Kai,et al,2023.Relationship between crack extension and uncoupled charging coefficient in deep rock blasting[J].Journal of High Pressure Physics,37(5):137-150. |
null | Dai Jun,2001.Calculation of rock crushed circle and fracture circle by column charge blasting[J].Journal of Liaoning Te-chnical University,20(2):144-147. |
null | Fan Yong, Wu Fan, Leng Zhendong,et al,2024.The effect of burst pressure peak elimination by radial uncoupled charge and its effect on the range of rock fracture[J].Journal of Military Engineering,45(1):131-143. |
null | Guo Xuebin, Xiao Zhengxue, Zhang Jichun,2006.On the attenuation characteristics of blasting seismic waves during propagation[J].China Mining Industry,15(3):51-53,57. |
null | He Fulian, Xiao Peng, Lai Yonghui,et al,2018.Determination of reasonable width of narrow coal pillar based on the third invariant of bias stress[J].Coal Mine Safety,49(3):44-47,51. |
null | Hu Yingguo, Lu Wenbo, Chen Ming,et al,2015.Determination of peak vibration velocity of critical damage plasmas in the near zone of rock blasting[J].Explosion and Shock,35(4):547-554. |
null | Huang Youpeng, Wang Zhiliang, Bi Chengcheng,2018.Simulation analysis of rock blasting damage range and damage distribution characteristics[J].Journal of Water Resources and Water Transportation Engineering,(5):95-102. |
null | Jiang Pengfei, Tang Degao, Long Yuan,2009.Numerical analysis of the effect of uncoupled charge blasting on hard rock stress field[J].Geotechnics,30(1):275-279. |
null | Li Xiaojing, Zhang Xiangyang, Zhang Huaken,et al,2022.Numerical simulation of blasting damage distribution characteristics of eccentric uncoupled charge[J].Journal of Shandong University of Architecture,37(1):8-15. |
null | Liang Rui, Bao Juan, Zhou Wenhai,2022. Characteristics of blasting damage to rock in the proximal zone of hydropower engineering slope gun holes[J].Journal of Changjiang Academy of Sciences,39(8):71-76. |
null | Liang Rui, Wang Shujiang, Zhou Wenhai,et al,2019.Research on blasting crack extension in slope excavation based on stress and velocity time course analysis[J].Journal of Changjiang Academy of Sciences,36(12):71-77. |
null | Liang Weimin, Zhou Fengjun,2012.Effect of uncoupled charge structure on rock blasting[J].Journal of Beijing Institute of Technology,32(12):1215-1218,1228. |
null | Liu Yunchuan, Wang Xuguang, Liu Liansheng,et al,2009.An energy method for calculate borehole pressure under decoupled charging[J].China Mining Magazine,18(6):104-107,110. |
null | Pan Qiang, Zhang Jichun, Shi Hongchao,et al,2019.Characterization of rock damage distribution in single-hole uncoupled charge blasting[J].Vibration and Shock,38(18):264-269. |
null | Rao Junying, Xue Yanghao, Shen Yang,et al,2023.Analysis of the coupling between laminar distribution and blasting damage based on RHT model[J].Journal of Central South University (Natural Science Edition),54(3):1204-1218. |
null | Sanchidrián J A, Segarra P, López L M,2007.Energy components in rock blasting[J].International Journal of Rock Mechanics and Mining Sciences,44(1):130-147. |
null | Song Y Q, Li X S, Guo D Y,et al,2019.Study on the decoupled charge effect in deep-hole cumulative blasting of coal seam[J].Advances in Civil Engineering,2019:8486198. |
null | Tawadrous A, 2010. Hard Rocks Under High Strain-rate Loading[D]. Canada: Queen’s University, |
null | Wang W, Zhang J Q, Liu A,2021.Study on eccentric uncoupled blasting effect of cutting seam pipe[J].Coatings,11(1):104. |
null | Wang Zhongren, Zhang Qi,2006.Role of the second and third invariants of the bias stress tensor in plastic processing[J]. Journal of Plasticity Engineering,13(3):1-5. |
null | Xia X, Yu C, Liu B,et al,2018.Experimental study on the seismic efficiency of rock blasting and its influencing factors[J].Rock Mechanics and Rock Engineering,51:2415-2425. |
null | Xu Ying, Meng Yiping, Cheng Yusheng,2002.Experimental study on the control of blasting cracks by charge uncoupling coefficient[J].Journal of Rock Mechanics and Engineering,21(12):1843-1847. |
null | Yang Renshu, Xiao Chenglong, Li Yongliang,et al,2020.A fractal study on blasting damage of an eccentric decouple charge structure[J].Journal of Vibration and Shock,39 (12):129-134. |
null | Ye Zhiwei, Chen Ming, Li Tong,et al,2021.Calculation method of peak pressure of hole wall for blasting with small uncoupling coefficient charge[J].Explosion and Shock,41(6):119-129. |
null | Yin Xiaoyu, Li Jiangong,2022.Analysis of the impact of blasting construction on the stability of tunnel surrounding rock[J]. Science and Technology Innovation and Application,12(28):64-67,71. |
null | Zhang Hua, Gao Fuqiang, Yang Jun,et al,2010.Experimental studies on blasting vibration velocity attenuation law in deep open-pit mining[J].Acta Armamentarii,31(Supp.1):275-278. |
null | Zhu Z M, Mohanty B, Xie H P,2007.Numerical investigation of blasting-induced crack initiation and propagation in rocks[J].International Journal of Rock Mechanics and Mining Sciences,44(3):412-424. |
null | Zong Qi, Cheng Bing, Wang Haibo,2019.Numerical simulation of pressure and damage effects on the hole wall of eccentric uncoupled charge[J].Blasting,36(3):76-83. |
null | 包娟,2023. 深层岩体爆破动力响应和爆破特性研究[D].兰州:兰州理工大学. |
null | 陈啸林,张智宇,王凯,等,2023.深部岩石爆破裂纹扩展与不耦合装药系数的关系[J].高压物理学报,37(5):137-150. |
null | 戴军,2001.柱状装药爆破岩石破碎圈和断裂圈计算[J].辽宁工业大学学报,20(2):144-147. |
null | 范勇,吴凡,冷振东,等,2024.径向不耦合装药爆压消峰作用及其对岩石破裂范围影响[J].兵工学报,45(1):131-143. |
null | 郭学彬,肖正学,张继春,2006.论爆破地震波在传播过程中的衰减特性[J].中国矿业,15(3):51-53,57. |
null | 何富连,肖鹏,来永辉,等,2018.基于偏应力第三不变量的窄煤柱合理宽度确定[J].煤矿安全,49(3):44-47,51. |
null | 胡英国,卢文波,陈明,等,2015.岩体爆破近区临界损伤质点峰值震动速度的确定[J].爆炸与冲击,35(4):547-554. |
null | 黄佑鹏,王志亮,毕程程,2018.岩石爆破损伤范围及损伤分布特征模拟分析[J].水利水运工程学报,(5):95-102. |
null | 姜鹏飞,唐德高,龙源,2009.不耦合装药爆破对硬岩应力场影响的数值分析[J].岩土力学,30(1):275-279. |
null | 李晓静,张向阳,张化恳,等,2022.偏心不耦合装药爆破损伤分布特征数值模拟[J].山东建筑大学学报,37(1):8-15. |
null | 梁瑞,包娟,周文海,2022. 水电工程边坡炮孔近区岩体爆破损伤特性[J]. 长江科学院院报, 39(8):71-76. |
null | 梁瑞,王树江,周文海,等,2019.基于应力与速度时程分析的边坡开挖爆破裂纹扩展研究[J].长江科学院院报,36(12):71-77. |
null | 梁为民,周丰峻,2012.不耦合装药结构对岩石爆破的影响[J].北京理工大学学报,32(12):1215-1218,1228. |
null | 刘云川,汪旭光,刘连生,等,2009.不耦合装药条件下炮孔初始压力计算的能量方法[J].中国矿业,18(6):104-107,110. |
null | 潘强,张继春,石洪超,等,2019.单孔不耦合装药爆破的岩体损伤分布特征研究[J].振动与冲击,38(18):264-269. |
null | 饶军应,薛炀皓,沈阳,等,2023.基于RHT模型的层理分布与爆破损伤关联耦合性分析[J].中南大学学报(自然科学版),54(3):1204-1218. |
null | 王仲仁,张琦,2006.偏应力张量第二及第三不变量在塑性加工中的作用[J].塑性工程学报,13(3):1-5. |
null | 徐颖,孟益平,程玉生,2002.装药不耦合系数对爆破裂纹控制的试验研究[J].岩石力学与工程学报,21(12):1843-1847. |
null | 杨仁树,肖成龙,李永亮,等,2020.不耦合偏心装药结构爆破损伤破坏的分形研究[J].振动与冲击,39(12):129-134. |
null | 叶志伟,陈明,李桐,等,2021.小不耦合系数装药爆破孔壁压力峰值计算方法[J].爆炸与冲击,41(6):119-129. |
null | 尹晓玉,李建功,2022.爆破施工对隧道围岩的稳定性影响分析[J].科技创新与应用,12(28):64-67,71. |
null | 张华,高富强,杨军,等,2010.深凹露天爆破震动速度衰减规律实验研究[J].兵工学报,31(增1):275-278. |
null | 中国水利学会施工专业委员会爆破学组,1995. 水工建筑物岩石基础开挖工程施工技术规范 [S].北京:水利电力出版社. |
null | 宗琦,程兵,汪海波,2019.偏心不耦合装药孔壁压力与损伤效应数值模拟[J].爆破,36(3):76-83. |
/
〈 | 〉 |