收稿日期: 2024-01-02
修回日期: 2024-01-23
网络出版日期: 2024-05-21
基金资助
国家自然科学基金项目“浅埋非充分垮落区下条—柱充填开采覆岩结构协调变形机制”(52174124);“浅埋非充分垮落区下开采覆岩结构联动失稳机理”(51904200)
Preparation Method and Compression Test of Sandstone with Different Water Saturation Under Constant Humidity Environment
Received date: 2024-01-02
Revised date: 2024-01-23
Online published: 2024-05-21
付腾飞 , 朱德福 . 恒湿环境下不同含水饱和度砂岩制备方法及压缩试验[J]. 黄金科学技术, 2024 , 32(2) : 280 -289 . DOI: 10.11872/j.issn.1005-2518.2024.02.012
In view of the low accuracy and uneven water distribution of water content in rock samples with different water saturations,a preparation method of rock samples with different water saturations and uniform distribution of water content was proposed based on the principle of osmotic technology and chemical thermodynamics.The basic principle consists of two parts:One is to control the concentration and molecular weight size of polyethylene glycol(PEG) in organic solution,so as to precisely control the matrix suction values of the solution water and water in the sample to determine the final water saturation of the sample.The other is to control the type of supersaturated solution placed in the constant humidity environment of the rock sample,so as to precisely control the chemical potentials of the component water when the total weight of the sample is stable,and the final water saturation of the sample is determined. The water saturation of rock samples prepared by this mothed are qualified samples with uniform saturation distribution.The water rationality of the method for accurately preparing rock samples with uniform water saturation distribution was also verified by nuclear magnetic resonance imaging(NMRI) experiments.Meanwhile,a device is designed independently to prepare rock samples with different saturations under constant humidity environment,and the constant strain rate compression test of sandstone under different saturation conditions was carried out by using the device.The test results show that the uniaxial compressive strength and elastic modulus of sandstone decreases with the increase of water saturation.After the peak,the post-peak stress decline slows and the brittleness of the sample decreases with the increase of water saturation. With the increase of confining pressure,the compaction stage of sandstone sample is weakened,and the deformation of the sample undergoes the process of elastic-brittle→elastic-plastic→strain hardening.The results of the study provide new methods and ideas for the accurate preparation of rock samples with different water saturations.
null | Baud P, Zhu W, Wong T F,2000.Failure mode and weakening effect of water on sandstone[J].Journal of Geophysical Research:Solid Earth,105(B7):16371-16389. |
null | Chao Zhiming, Wang Huanling, Xu Weiya,et al,2018.A rapid method for preparing rock samples with different water saturation levels[J].Rock and Soil Mechanics,39(3):1109-1114. |
null | Fu T F, Xu T, Meredith P G,et al,2021a.A meso-mechanical approach to time-dependent deformation and fracturing of partially saturated sandstone[J].International Journal of Rock Mechanics and Mining Sciences, 145:104840. |
null | FuT F, Xu T, Heap M,et al,2021b.Analysis of capillary water imbibition in sandstone via a combination of nuclear magnetic resonance imaging and numerical DEM modeling[J].Engineering Geology,285:106070. |
null | Grgic D, Amitrano D,2009.Creep of a porous rock and associated acoustic emission under different hydrous conditions[J].Journal of Geophysical Research: Solid Earth,114(B10):B10201. |
null | Hawkins A, McConnell B,1992.Sensitivity of sandstone streng-th and deformability to changes in moisture content[J].Quarterly Journal of Engineering Geology and Hydrogeology,25(2):115-130. |
null | Heap M J, Villeneuve M, Kushnir A R,et al,2019. Rock mass strength and elastic modulus of the Buntsandstein:An important lithostratigraphic unit for geothermal exploitation in the Upper Rhine Graben[J].Geothermics,77:236-256. |
null | Jiang Jingdong, Chen Shengshui, Xu Jie,et al,2018.Mechanical properties and energy characteristics of mudstone under different containing moisture states[J].Journal of China Coal Society,43(8):2217-2224. |
null | Lajtai E Z, Schmidtke R H, Bielus L P,1987.The effect of water on the time-dependent deformation and fracture of a granite[J].International Journal of Rock Mechanics and Mining Sciences and Geomechanics Abstracts,24(4):247-255. |
null | Li Dazhen,1982.Chemical Thermodynamics Foundation[M].Beijing:Beijing Normal University Press. |
null | Liu Bo, Sun Yanding, Yuan Yifeng,et al,2020.Strength characteristics of frozen sandstone with different water content and its strengthening mechanism[J].Journal of China University of Mining and Technology,49(6):1085-1093,1127. |
null | Liu Ding, Xu Junce, Pu Hai,2021.Experimental study on creep characteristics of gangue cemented fillers with different water content[J].Journal of Mining and Safety Engineering,38(5):1055-1062. |
null | Liang X, Tang C A, Hu L H,et al,2023.Shear behavior and fracturing mechanism of intact sandstone affected by spatio-temporally varying water[J].Computers and Geotechnics,155:105200. |
null | Shakoor A, Barefield E H,2009.Relationship between unconfined compressive strength and degree of saturation for selected sandstones[J].Environmental and Engineering Geoscience,15(1):29-40. |
null | Su Chengdong, Fu Yisheng,2014.Experimental study of triaxial compression deformation and strength characteristics of red sandstone[J].Chinese Journal of Rock Mechanics and Engineering,33(Supp.1):3164-3169. |
null | Tang S B,2018.The effects of water on the strength of black sandstone in a brittle regime[J].Engineering Geology, 239:167-178. |
null | Tang Youqi,1984.Phase Equilibrium,Chemical Equilibrium and Thermodynamics[M].Beijing:Science Press. |
null | Verstrynge E, Adriaens R, Elsen J,et al,2014. Multi-scale analysis on the influence of moisture on the mechanical behavior of ferruginous sandstone[J].Construction and Building Materials,54:78-90. |
null | Wong L N Y, Maruvanchery V, Liu G,2016.Water effects on rock strength and stiffness degradation[J].Acta Geotechnica,11(4):713-737. |
null | Wu Yanqing, Zhang Zhuoyuan,1995. Introduction to Rock Mass Hydraulics[M]. Chengdu:Southwest Jiaotong University Press. |
null | Yang Yongming, Ju Yang, Chen Jialiang,et al,2014. Cracks development features and energy mechanism of dense sandstone subjected to triaxial stress[J].Chinese Journal of Rock Mechanics and Engineering,33(4):691-698. |
null | Zhao Honghe, Yang Xiaolin, Gao Fuqiang,et al,2014.Discussion on preparing methods of rock samples with different water contents[J].Journal of Luoyang Institute of Science and Technology,24(1):4-7. |
null | Zhou Hui, Li Zhen, Song Yuze,et al,2013.Chemo-thermodynamical method for precisely preparing rock sample with different water contents[J].Rock and Soil Mechanics,34(2):311-315. |
null | Zhou Zilong, Xiong Cheng, Cai Xin,et al,2018. Mechanical and infrared radiation properties of sandstone with different water contents under uniaxial compression[J].Journal of Central South University(Science and Technology),49(5):1189-1196. |
null | 巢志明,王环玲,徐卫亚,等,2018.一种快速制备不同含水饱和度岩石试样的方法[J].岩土力学,39(3):1109-1114. |
null | 蒋景东,陈生水,徐婕,等,2018.不同含水状态下泥岩的力学性质及能量特征[J].煤炭学报,43(8):2217-2224. |
null | 李大珍,1982.化学热力学基础[M].北京:北京师范大学出版社. |
null | 刘波,孙颜顶,袁艺峰,等,2020.不同含水率冻结砂岩强度特性及强度强化机制[J].中国矿业大学学报,49(6):1085-1093,1127. |
null | 刘鼎,许军策,浦海,2021.不同含水率下矸石胶结充填体蠕变特性试验研究[J].采矿与安全工程学报,38(5):1055-1062. |
null | 苏承东,付义胜,2014.红砂岩三轴压缩变形与强度特征的试验研究[J].岩石力学与工程学报,33(增1):3164-3169. |
null | 唐有祺,1984.相平衡、化学平衡和热力学[M].北京: 科学出版社. |
null | 仵彦卿,张倬元,1995.岩体水力学导论[M].成都:西南交通大学出版社. |
null | 杨永明,鞠杨,陈佳亮,等,2014. 三轴应力下致密砂岩的裂纹发育特征与能量机制[J].岩石力学与工程学报,33(4):691-698. |
null | 赵红鹤,杨小林,高富强,等,2014. 不同含水率岩石试样制备方法探讨[J].洛阳理工学院学报(自然科学版),24(1):4-7. |
null | 周辉,李震,宋雨泽,等,2013.精确制备不同含水率岩石试样的化学热力学方法[J].岩土力学,34(2):311-315. |
null | 周子龙,熊成,蔡鑫,等,2018.单轴载荷下不同含水率砂岩力学和红外辐射特征[J].中南大学学报(自然科学版),49(5):1189-1196. |
/
〈 | 〉 |