收稿日期: 2023-07-26
修回日期: 2023-12-03
网络出版日期: 2024-05-21
Evalution Method of Rock Mass Quality Based on BWO-RF Model
Received date: 2023-07-26
Revised date: 2023-12-03
Online published: 2024-05-21
岩体质量分级是地下工程初期设计和施工的基础。为了更加高效准确地开展岩体质量评价,提出了一种基于白鲸优化(BWO)随机森林的岩体质量评价模型——BWO-RF模型,同时构建了麻雀搜索算法优化随机森林(SSA-RF)、粒子群优化随机森林(PSO-RF)和未优化随机森林(RF)的岩体质量评价模型进行对比。在模型构建前,建立了包含131组工程实例数据的数据库,运用该数据库最终完成了4种模型的训练和测试。基于模型测试结果,采用准确率、查准率、召回率、F1值和AUC值5个评价指标对模型进行对比优选。研究结果表明:BWO-RF模型各项评价指标均优于其余3种模型,具有更优的评价性能;经过工程实例验证,本研究所提出的BWO-RF模型预测准确率达90%,可为实际工程建设提供参考依据,具备实际工程应用价值。
赵国彦 , 胡凯译 , 李洋 , 刘雷磊 , 王猛 . 基于BWO-RF模型的岩体质量评价方法[J]. 黄金科学技术, 2024 , 32(2) : 270 -279 . DOI: 10.11872/j.issn.1005-2518.2024.02.105
Rock mass quality classification is the foundation of initial underground engineering design and construction.In order to evaluate rock mass quality more accurately,this study used beluga whale optimization(BWO)to optimize random forest model(RF),a BWO-RF model which can be used for rock mass quality evaluation was proposed.At the same time,the rock mass quality evaluation models of sparrow search al-gorithm optimized random forest(SSA-RF),particle swarm optimization optimized random forest(PSO-RF)and non-optimized random forest(RF) were constructed for comparison.Before the models construction,a data-base containing 131 engineering cases data was established through literature review and field test data collec-tion.After writing the code of models construction,the training and testing of the four models were completed by using the database.Based on the model test results,five model evaluation indexes,accuracy,precision,recall,F1 score and AUC,were used to compare and select the best model of the four kinds of rock mass quality eva-luation models.The results show that the BWO-RF model has the best performance among the four kinds of rock mass quality evaluation models,and each evaluation indexes of model are better than the other three mo-dels,indicating that the BWO-RF model has better practicability in the evaluation of rock mass quality.Through the test set,the prediction accuracy of BWO-RF model proposed in this study is 90%,which can provide a reliable reference for practical engineering construction and has practical engineering application value.
null | Breiman L,2001.Random forests[J].Machine Learning,45:5-32. |
null | Cai Guangkui,2011.Study of the BP Neural Network on the Stability Classification of Surrounding Rocks[D].Nanjing:Hehai University. |
null | Cai Meifeng, He Manchao, Liu Dongyan,2002.Rock Mechanics and Engineering[M].Beijing:Science Press. |
null | Deere D U,Miller R P,1966.Engineering classification and index properties for intact rock[R].Illinois:Illinois University at Urbana Dept of Civil Engineering. |
null | Fan Aoqi, Wang Wanlu, Li Shujian,et al,2024.Evaluation of rock mass quality of phosphorite mines by topology based on optimal combination weight[J].Gold Science and Technology,32(1):132-143. |
null | Gong Fengqiang, Li Xibing,2007.Application of distance discriminant analysis method to classification of engineering quality of rock masses[J].Chinese Journal of Rock Mechanics and Engineering,26(1):190-194. |
null | Han Gangfei, Tian Jing, Zi Xuan,et al,2023.Death risk prediction after PCI in patients with coronary heart disease and heart failure based on random forest[J].Chinese Journal of Disease Control and Prevention,27(4):425-430. |
null | Hu Jianhua, Guo Mengmeng, Zhou Tan,et al,2021.Rock mass quality evaluation model based on improved transfer learning algorithm[J].Gold Science and Technology,29(6):826-833. |
null | Hu Jianhua, Shang Junlong, Lei Tao,2012.Rock mass quality evaluation of underground engineering based on RS-TOPSIS method[J].Journal of Central South University(Science and Technology),43(11):4412-4419. |
null | Jia Mingtao, Wang Liguan,2010.Evaluation of rockmass quality based on regionalization variable optimal estimation theory and RMR system in Jinchuan mine No.3[J].Rock and Soil Mechanics,31(6):1907-1912. |
null | Ju Guanzhang, Ren Zonglai, He Jia,et al,2022.Prediction of catering data based on random forest model[J].Electronic Technology and Software Engineering,(21):202-207. |
null | Lai Yongbiao, Qiao Chunsheng, Liu Kaiyun,et al,2006.Application of support vector machine in classification of surrounding rock stability[J].Journal of Hydraulic Engineering,37(9):1092-1096. |
null | Li P F, Zhang Z Y, Tao L J,2004.Stability ranking system of rockmass surrounding a large-scale underground cavern group[J].Journal of Engineering Geology,12(1):25-29. |
null | Li Qiang,2002.Study on the application of BP neural network in classification of rockmass quality[J].Northwestern Seismological Journal,24(3):29-33,38. |
null | Liu Xue, Tian Yunna, Tian Yuan,2021.A survey of swarm intelligence methods[J].Information and Computer,33(24):63-69. |
null | Ministry of Water Resources,PRC,2014. Engineering rock mass classification standard: [S].Beijing:China Planning Publishing House. |
null | Palmstrom A, Broch E,2006.Use and misuse of rock mass classification systems with particular reference to the Q-system[J].Tunnelling and Underground Space Technology,21(6):575-593. |
null | Qiu Daohong, Chen Jianping, Que Jinsheng,et al,2008.Evaluation of tunnel rock quality with routh sets theory and artificial neural networks[J].Journal of Jilin University(Earth Science Edition),38(1):86-91. |
null | Sha Peng, Zhao Yiwen, Gao Shuyu,et al,2020.Improvement of BQ classification for layered rock mass quality index in tunnel engineering[J].Journal of Engineering Geology,28(5):942-950. |
null | Tang Hai, Wan Wen, Liu Jinhai,2011.Evaluation of underground cavern rock quality based on uncertainty measure theory[J].Rock and Soil Mechanics,32(4):1181-1185. |
null | Wang Mingyao, Lu Yiqiang, He Fei,et al,2022.Adaptability of TBM and classification method of large deformation of soft rock[J].Hazard Control in Tunnelling and Underground Engineering,4(4):79-90. |
null | Wen Changping,2008.Classification of rock-mass stability based on attributive mathematical theory[J].Journal of Hydroelectric Engineering,37(3):75-80. |
null | Wu Aiqing, Wang Bin,2014.Engineering rock mass classification method based on rock mass quality index BQ for rock slope[J].Chinese Journal of Rock Mechanics and Engineering,33(4):699-706. |
null | Wu Jing,2023.Design of apple classification system based on improved random forest[J].Journal of Longdong University,34(2):50-56. |
null | Xu Jialin, Qian Minggao,2007.Concept of green mining and its technical framework[J].Science and Technology Review,25(7):61-65. |
null | Zhang Qinli, Li Xiaomeng,2021.Rock mass quality classification based on Mamdani FIS model and RMR method[J].Mining and Metallurgical Engineering,41(5):1-4,9. |
null | Zhao G Y, Wang M, Liang W Z,2022.A comparative study of SSA-BPNN,SSA-ENN,and SSA-SVR models for predicting the thickness of an excavation damaged zone around the roadway in rock[J].Mathematics,10(8):1351. |
null | Zhao Xingguang, Cai Ming, Cai Meifeng,2010.Influence of dilation on rock mass displacement around underground excavations—A case study of Donkin-Morien Tunnel in Canada[J].Chinese Journal of Rock Mechanics and Engineering,29(11):2185-2195. |
null | Zhong C, Li G, Meng Z,2022.Beluga whale optimization:A novel nature-inspired metaheuristic algorithm[J].Knowledge-Based Systems,251:109215. |
null | Zhou J, Asteris P G, Armaghani D J,et al,2020.Prediction of ground vibration induced by blasting operations through the use of the Bayesian Network and random forest models[J].Soil Dynamics and Earthquake Engineering,139:106390. |
null | 蔡广奎,2001.围岩稳定性分类的BP网络模型的研究[D].南京:河海大学. |
null | 蔡美峰,何满潮,刘东燕,2002.岩石力学与工程[M].北京:科学出版社. |
null | 凡奥奇,王万禄,李树建,等,2024.基于优化组合赋权的可拓学磷矿山岩体质量评价[J].黄金科学技术,32(1):132-143. |
null | 宫凤强,李夕兵,2007.距离判别分析法在岩体质量等级分类中的应用[J].岩石力学与工程学报,26(1):190-194. |
null | 韩港飞,田晶,紫铉,等,2023.基于随机森林的冠心病合并心力衰竭患者PCI术后死亡风险预测研究[J].中华疾病控制杂志,27(4):425-430. |
null | 胡建华,郭萌萌,周坦,等,2021.基于改进迁移学习算法的岩体质量评价模型[J].黄金科学技术,29(6):826-833. |
null | 胡建华,尚俊龙,雷涛,2012.基于RS-TOPSIS法的地下工程岩体质量评价[J].中南大学学报(自然科学版),43(11):4412-4419. |
null | 贾明涛,王李管,2010.基于区域化变量及RMR评价体系的金川Ⅲ矿区矿岩质量评价[J].岩土力学,31(6):1907-1912. |
null | 鞠冠章,任宗来,何佳,等,2022.基于随机森林模型的餐饮数据预测[J].电子技术与软件工程,(21):202-207. |
null | 赖永标,乔春生,刘开云,等,2006.支持向量机在围岩稳定性分类中的应用[J].水利学报,37(9):1092-1096. |
null | 李强,2002.BP神经网络在工程岩体质量分级中的应用研究[J].西北地震学报,24(3):29-33,38. |
null | 刘雪,田云娜,田园,2021.群智能算法研究综述[J].信息与电脑(理论版),33(24):63-69. |
null | 邱道宏,陈剑平,阙金声,等,2008.基于粗糙集和人工神经网络的洞室岩体质量评价[J].吉林大学学报(地球科学版),38(1):86-91. |
null | 沙鹏,赵逸文,高书宇,等,2020.隧道层状岩体质量评价的BQ分级改进[J].工程地质学报,28(5):942-950. |
null | 唐海,万文,刘金海,2011.基于未确知测度理论的地下洞室岩体质量评价[J].岩土力学,32(4):1181-1185. |
null | 王明耀,鲁义强,贺飞,等,2022.软岩大变形分类分级方法及TBM适应性[J].隧道与地下工程灾害防治,4(4):79-90. |
null | 文畅平,2008.基于属性数学理论的岩体质量分级方法[J].水力发电学报,37(3):75-80. |
null | 邬爱清,汪斌,2014.基于岩体质量指标BQ的岩质边坡工程岩体分级方法[J].岩石力学与工程学报,33(4):699-706. |
null | 吴静,2023.基于改进随机森林的苹果分类系统设计[J].陇东学院学报,34(2):50-56. |
null | 许家林,钱鸣高,2007.绿色开采的理念与技术框架[J].科技导报,25(7):61-65. |
null | 张钦礼,李晓孟,2021.基于Mamdani FIS模型及RMR法的岩体质量分级研究[J].矿冶工程,41(5):1-4,9. |
null | 赵星光,蔡明,蔡美峰,2010.剪胀对地下工程岩体位移的影响——以加拿大Donkin-Morien隧道为例[J].岩石力学与工程学报,29(11):2185-2195. |
null | 中华人民共和国水利部,2014. 工程岩体分级标准: [S].北京:中国计划出版社. |
/
〈 | 〉 |