img

QQ群聊

img

官方微信

  • CN 62-1112/TF 
  • ISSN 1005-2518 
  • 创刊于1988年
高级检索
采选技术与矿山管理

基于曲线拟合和神经网络的独头巷道CO浓度预测研究

  • 周昌微 ,
  • 谢贤平 ,
  • 都喜东
展开
  • 昆明理工大学国土资源工程学院,云南 昆明 650000
周昌微(1997-),男,陕西安康人,硕士研究生,从事矿井通风和安全工程研究工作。1655460339@qq.com

收稿日期: 2023-07-31

  修回日期: 2023-11-07

  网络出版日期: 2024-03-22

基金资助

云南省基础研究计划项目“堆浸体系中氧化铜矿散体孔裂隙双重介质演化及渗流响应机制研究”(202101BE070001-039);云南省教育厅科学研究基金项目“深部含水页岩储层CO2地质封存机制及其吸附特性响应规律研究”(2022J0055)

Research on the Prediction of CO Concentration in Single-head Roadway Based on Curve Fitting and Neural Network

  • Changwei ZHOU ,
  • Xianping XIE ,
  • Xidong DU
Expand
  • Faculty of Land Resources Engineering,Kunming University of Science and Technology,Kunming 650000,Yunnan,China

Received date: 2023-07-31

  Revised date: 2023-11-07

  Online published: 2024-03-22

摘要

为了准确预测矿山独头巷道CO浓度,基于云南老厂锡矿1800运输巷甩车场独头巷道掘进工作面CO浓度监测数据,运用MATLAB曲线拟合工具箱对该独头巷道中CO浓度随时间的变化情况进行曲线拟合,建立了该矿山独头巷道中CO浓度随时间变化的数学模型。通过该模型得到该独头巷道中CO浓度值达到安全规程要求所需的时间。然后,运用卷积神经网络时间序列预测模型(CNN模型)和BP神经网络时间序列预测模型(BP模型)对独头巷道CO浓度进行预测,并比较评价指标R2RMSE。结果表明:BP神经网络时间序列预测模型对该独头巷道CO浓度的预测效果更好,为该矿山独头巷道CO浓度值的监测和控制提供了准确可靠的理论依据。

本文引用格式

周昌微 , 谢贤平 , 都喜东 . 基于曲线拟合和神经网络的独头巷道CO浓度预测研究[J]. 黄金科学技术, 2024 , 32(1) : 75 -81 . DOI: 10.11872/j.issn.1005-2518.2024.01.108

Abstract

In order to realize the prediction of CO concentration in the single-head roadway of the mine,based on the monitoring data of CO concentration in the heading face of the single-head roadway in the 1800 transport lane of Laochang tin mine in Yunnan Province.Firstly,the MATLAB curve fitting toolbox was used to fit the curve of the change of CO concentration with time in the single-head roadway,and the mathematical model of the change of CO concentration with time in the single-head roadway of the mine was established.Through the model,the time required for the CO concentration value in the single-head roadway of the mine to reach the CO concentration value required by the safety regulations was obtained.Then,the convolutional neural network time series prediction model(CNN model) and the BP neural network time series prediction model(BP model) were used to predict the CO concentration,and the two evaluation indexes of R2 and RMSE were compared.The results show that the BP neural network time series prediction model has the better prediction effect on the CO concentration of the single-head roadway,which provides an accurate and reliable theoretical basis for the monitoring and control of the CO concentration value of the single-head roadway in the mine.

参考文献

null Adedipupo O O, Ayodele A A, Abideen L T,et al,2022.Detection of appropriate model for nigeria population growth using Root Mean Square Error (RMSE)[J].International Journal of Systems Science and Applied Mathematics,7(3):46-51.
null Cao Y, Ji H, Zhang Y,et al,2018.Study on distribution of CO and concentration prediction in blind gallery after blasting operation[J].Archives of Mining Sciences,63(2):283-300.
null Chen Chao, Nie Hexiang, Li Qiong,et al,2022.Prediction model of CO pollutant concentration distribution characteristics in urban underground roads based on traffic wind conditions[J].China Journal of Highway,35 (5):161-169.
null Gao Qiuying, Wang Lili, Wang Rongzhong,2021.Research on least squares curve fitting and optimization algorithm[J].Industrial Control Computer,34 (11):100-101.
null Ji Hongguang, Cao Yang, Zhang Ge,et al,2014.Prediction of smoke exhaust time during excavation of single-head roadway[J].Metal Mine,43(5):142-145.
null Gong Xiaoyan, Sun Yuheng, Liu Zhuangzhuang,et al,2023.Study on airflow intelligent control model of fully mechanized heading face based on BP neuralnet work[J].Safety and Environmental Engineering,30(30):138-145.
null Jiang Feng, Han Xingyu, Wang Hui,2023.Prediction of PM2.5 concentration in Yangtze River Economic Belt based on graph neural network[J].Environmental Science and Te-chnology,46(11):90-101.
null Li Peng, Duan Shuqing, Wang Kun,et al,2014.Grey model and curve fitting settlement prediction and correlation analysis[J].Journal of Underground Space and Engineering,10 (1):109-115.
null Yanhong Lü, Wang Qin,2013.Research on tunnel CO concentration prediction based on neural network information fusion[J].Information Technology,37 (9):128-131.
null Piepho H P,2019.An adjusted coefficient of determination (R2) for generalized linear mixed models in one go[J].Biometrical Journal,61(4):860-872.
null Shi Xiuzhi, Fan Yuqian, Shang Xueyi,2016.Filling strength prediction based on PCA-BP neural network model[J].Gold Science and Technology,24(3):64-69.
null Wang Shibin, Chen Rihui, Liu Shitao,et al,2014.Analysis and prediction of CO concentration change after blasting in heading face [J].Science and Technology and Engineering,14 (6):101-103,107.
null Wu F, Shi S, Lu Y,et al,2023.Analysis of CO source and prediction model of gushing concentration at the return air corner of working face in shallow coal seam mine[J].Combustion Science and Technology:1-16.
null Wu Min, Pan Chunrong,2023.Application of one-dimensional convolutional neural network in magnetite separation[J / OL].Nonferrous Metals(Mineral Processing Section): 1-6[2023-07-28 ].
null Wu Y, Zhang Y, Zhou C,et al,2021.Study of CO sources and early-warning concentration of spontaneous combustion at air return corner in fully mechanized mining faces[J].Combustion Science and Technology,193(9):1587-1604.
null Xie Raoqing, Chen Jianhong, Xiao Wenfeng,2022.Prediction method of stope stability based on NPCA-GA-BP neural network[J].Gold Science and Technology,30(2):272-281.
null Yang Tingting, Gao Qian, Li Haoqian,et al,2022.Fault warning of coal mill based on convolutional neural network-long short-term memory neural network[J].Thermal Power Generation,51(10):122-129.
null Zeng Junhui, Li Xibing,2019.Prediction of mine subsidence area based on chaotic time series analysis method [J].Gold Science and Technology,27 (2):249-256.
null Zhai Xiaowei, Ma Lingjun, Deng Jun,2011.Research and application of CO concentration prediction model in upper corner of working face[J].Coal Science and Technology,39 (11):59-62.
null Zhang Ge, Cao Yang, Ji Hongguang,et al,2014.Model test study on the emission law and concentration prediction of gun smoke in single-head roadway[J].Modern Tunnel Te-chnology,51(4):150-154.
null Zhang Zhigang, Xu Ying, Zhang Jinqiu,et al,2022.Prediction model of CO gas concentration in highway tunnel based on random forest[J].Science and Technology and Engineering,22 (26):11729-11735.
null Zhou Kaihong, Ran Hongmei, Jiang Qinggu,et al,2023.Nonlinear error compensation of digital dial gauge based on improved BP neural network[J].Modern Manufacturing Engineering,(7 ):117-122.
null 陈超,聂鹤翔,李琼,等,2022.基于交通风条件多点进出城市地下道路CO污染物浓度分布特性预测模型[J].中国公路学报,35(5):161-169.
null 高秋英,王丽丽,王荣忠,2021.最小二乘法曲线拟合及优化算法研究[J].工业控制计算机,34(11):100-101.
null 纪洪广,曹杨,张舸,等,2014.独头巷道掘进过程中排烟时间预测[J].金属矿山,43(5):142-145.
null 龚晓燕,孙育恒,刘壮壮,等,2023.基于BP神经网络的煤矿综掘面风流智能调控模型研究 [J].安全与环境工程,30(30):138-145.
null 蒋锋,韩兴钰,王辉,2023.基于图神经网络的长江流域经济带PM2.5浓度预测[J].环境科学与技术,46(11):90-101.
null 李篷,段淑清,王堃,等,2014.灰色模型与曲线拟合沉降预测及相关性分析[J].地下空间与工程学报,10(1):109-115.
null 吕燕红,王芹,2013.基于神经网络信息融合隧道CO浓度预测研究[J].信息技术,37(9):128-131.
null 史秀志,范玉乾,尚雪义,2016.基于PCA-BP神经网络模型的充填体强度预测[J].黄金科学技术,24(3):64-69.
null 王时彬,陈日辉,刘世涛,等,2014.独头掘进面爆破后CO浓度变化分析及预测[J].科学技术与工程,14(6):101-103,107.
null 吴敏,潘春荣,2023.一维卷积神经网络在磁铁矿分选中的应用[J/OL].有色金属(选矿部分):1-6[2023-07-28].
null 谢饶青,陈建宏,肖文丰,2022.基于NPCA-GA-BP神经网络的采场稳定性预测方法[J].黄金科学技术,30(2):272-281.
null 杨婷婷,高乾,李浩千,等,2022.基于卷积神经网络—长短时记忆神经网络的磨煤机故障预警[J].热力发电,51(10):122-129.
null 曾俊晖,李夕兵,2019.基于混沌时间序列分析方法的矿山塌陷区范围预测[J].黄金科学技术,27(2):249-256.
null 翟小伟,马灵军,邓军,2011.工作面上隅角CO浓度预测模型的研究与应用[J].煤炭科学技术,39(11):59-62.
null 张舸,曹杨,纪洪广,等,2014.独头巷道中炮烟散发规律及浓度预测模型试验研究[J].现代隧道技术,51(4):150-154.
null 张志刚,徐莹,张锦秋,等,2022.基于随机森林的公路隧道CO气体浓度预测模型[J].科学技术与工程,22(26):11729-11735.
null 周凯红,冉红梅,蒋青谷,等,2023.基于改进BP神经网络的数显千分表非线性误差补偿[J].现代制造工程,(7):117-122.
文章导航

/