[an error occurred while processing this directive] [an error occurred while processing this directive] [an error occurred while processing this directive]
[an error occurred while processing this directive]
采选技术与矿山管理

三山岛金矿海底开采井下沉降特点及影响因素浅析

  • 张国栋 , 1 ,
  • 刘佳 2, 3, 4 ,
  • 马凤山 , 2, 3 ,
  • 李光 2, 3 ,
  • 郭捷 2, 3
展开
  • 1. 山东黄金矿业(莱州)有限公司三山岛金矿,山东 莱州 261442
  • 2. 中国科学院地质与地球物理研究所,中国科学院页岩气与地质工程重点实验室,北京 100029
  • 3. 中国科学院地球科学研究院,北京 100029
  • 4. 中国科学院大学,北京 100049
马凤山(1964-),男,河北吴桥人,研究员,博士生导师,从事地质工程与地质灾害研究工作。

张国栋(1974-),男,山东莱州人,工程师,从事矿山工程测量工作。

收稿日期: 2023-01-09

  修回日期: 2023-04-09

  网络出版日期: 2023-11-21

基金资助

国家自然科学基金重点项目“海底采矿对地质环境的胁迫影响与致灾机理”(41831293)

Analysis on the Characteristics and Influencing Factors of Underground Settlement in Submarine Mining of Sanshandao Gold Mine

  • Guodong ZHANG , 1 ,
  • Jia LIU 2, 3, 4 ,
  • Fengshan MA , 2, 3 ,
  • Guang LI 2, 3 ,
  • Jie GUO 2, 3
Expand
  • 1. Sanshandao Gold Mine, Shandong Gold Mining(Laizhou) Co. , Ltd. , Laizhou 261442, Shandong, China
  • 2. Key Laboratory of Shale Gas and Geoengineering, Institute of Geology and Geophysics, Chinese Academy of Sciences, Beijing 100029, China
  • 3. Innovation Academy for Earth Science, Chinese Academy of Sciences, Beijing 100029, China
  • 4. University of Chinese Academy of Sciences, Beijing 100049, China

Received date: 2023-01-09

  Revised date: 2023-04-09

  Online published: 2023-11-21

摘要

三山岛金矿新立矿区是我国首例实施海底开采的金属矿山。为了研究新立矿区井下矿体围岩变形破坏特征,以与矿体走向垂直的55号勘探线为监测剖面,通过布设井下四等水准监测系统,对55号勘探线剖面内不同深度开采中段巷道顶板围岩的垂直位移进行了长期监测。分析结果表明:(1)海底不同深度各中段矿体开采引起的变形均表现为对上盘岩体的影响范围大,而对下盘岩体影响范围小,越靠近矿体(或控矿断层F1)部位,顶板围岩的下沉量越大;(2)各中段的累积沉降量曲线总体上表现为不对称漏斗形,其中较浅部的-200 m中段与-240 m中段累积沉降量曲线底部较为平缓,呈近似“锅”状,而深部的-320 m、-400 m、-480 m和-600 m中段沉降曲线呈“漏斗”状;(3)新立矿区矿体厚度、开采深度、开采强度、围岩岩性、围岩岩体结构以及充填效果是影响海底倾斜矿体开采围岩变形的因素,其中,矿区内控矿断层F1的存在直接影响围岩变形曲线的形态。

本文引用格式

张国栋 , 刘佳 , 马凤山 , 李光 , 郭捷 . 三山岛金矿海底开采井下沉降特点及影响因素浅析[J]. 黄金科学技术, 2023 , 31(5) : 785 -793 . DOI: 10.11872/j.issn.1005-2518.2023.05.011

Abstract

In recent years,with the decrease of land mineral resources,the development of marine minerals has become a global emerging industry,especially the mining of coastal bedrock deposits under the sea,has been the focus of mining development in various countries.For large-scale mining under the sea,the movement and deformation of the submarine rockbody poses a major threat to mining safety.It is important to pay attention to the deformation damage of the surrounding rock,which is important to realize the safe and efficient production of submarine mines. In order to study the deformation and damage characteristics of the surrounding rocks of the underground mine body in the Xinli mining area,the 55 exploration line perpendicular to the mine body was used as the monitoring profile,and the roadway roofs of -200 m,-240 m,-320 m,-400 m,-480 m,and -600 m sublevels were monitored by the underground four-level monitoring system that has been deployed since December 2015.The vertical displacements of the surrounding rocks in sublevels of the roadway at -200 m,-240 m,-320 m,-400 m,-480 m and -600 m were monitored for a long time,and the time series data of the settlement of the roadway roof in each sublevel were obtained.The deformation of the surrounding rock caused by metal ore mining is a complex mechanical problem.By analyzing the multi-year monitoring results,several significant characteristics of underground settlement are revealed.(1)The deformation caused by mining of the orebody in sublevel at different depths of the seabed shows a large influence range on the rock mass of the fault hanging wall,while the influence range on the footwall rock mass is small.(2)The closer to the orebody(or the ore-control fault F1) the greater the subsidence of the rock body,forming the feature that the slope of the curve to the left of the maximum settlement point in the settlement curve is larger in absolute value,while the slope of the curve to the right is slightly smaller in absolute value.(3)The final subsidence curves of the six sublevels in the line 55 profile have similar shapes and are generally asymmetric funnel-shaped,with the -200 m sublevel and the -240 m sublevel having a gentle bottom of the cumulative subsidence curve,which is similar to a “pot”,while the -320 m,-400 m,-480 m and -600 m sublevels have a “funnel” shaped subsidence curve.This phenomenon is related to the mining activities in the mine area.(4)The single settlement value in any monitoring period in the sublevel at any depth has the characteristics of up and down fluctuation,which reflects the non-linear characteristics of settlement deformation to a certain extent.The practice of seabed mining in Sanshandao gold mine confirms that:Since 2005,with the expansion of mining scale,the increase of mining intensity and the extension of mining years,the deformation of some of the underground tunnels is serious,and the movement and deformation of the underground surrounding rocks may cause seawater to gush into the tunnels along the damaged rocks,thus threatening the life safety of mining personnel.The study concluded that the thickness of the orebody,mining depth,mining intensity,surrounding lithology and rock structure as well as filling effect in the Xinli mining area are potential factors affecting the deformation of the surrounding rock in the mining of the inclined orebody.Among them,the presence of the controlling fault F1 in the mine area directly affects the shape of the surrounding rock deformation curve,and this deformation feature should be considered in future production work as well as safety maintenance work(roadway repair work) to prevent from affecting productivity or even generating safety accidents.

[an error occurred while processing this directive]

《全球矿业发展报告2023》发布

10月26日,在2023中国国际矿业大会“一带一路”地学合作与矿业投资论坛上,自然资源部中国地质调查局国际矿业研究中心发布了《全球矿业发展报告2023》(以下简称《报告》)。《报告》显示,后疫情时代全球矿产资源供需结构出现新变化,国际矿业合作面临新的机遇和挑战。

《报告》显示,后疫情时代全球供应链产业链受持续冲击发生结构性调整,区域化、本土化趋势加快。2022年,全球固体矿产勘查投入约130.4亿美元,同比增长16%,进一步升温回暖,创近9年新高,风险勘查市场活跃。

供需方面,全球能源资源新增储量、产量和消费量继续分化。其中,化石能源供需处于紧平衡状态,石油生产消费稳步增长恢复至疫情前水平,天然气供需双降,煤炭产量和消费量均创历史新高。大宗矿产供需分化明显:钢铁供需双降;铜供给增长不及需求,消费同比增长3.72%;铝土矿供强需弱,消费量下降0.8%,供需缺口大幅缩小。锂、钴和镍等战略性新兴矿产供需缺口持续缩小。贸易方面,全球主要矿产品贸易量总体减少,但战略性新兴矿产贸易量增加。

市场价格方面,全球主要矿产品价格冲高后回落。原油、天然气、煤炭、铁、铜、铝、锂、钴和镍价格在2022年创历史新高,2023年回落。矿业公司股价高位回调,与矿产品价格走势相关性较高。矿业资本加大新能源投资布局,全球氢能项目数量和规模快速扩大。环境、社会和公司治理(ESG)成为矿业公司吸引投资和提升竞争力的核心指标。

《报告》指出,2022—2023年全球主要国家和地区矿业政策出现密集调整,推动矿业产业链本土化和经济复苏。发达经济体调整关键矿产战略,更新关键矿产清单;发展中国家修改矿业制度和法律法规,强化资源管理。矿业科技装备走向智能化,5G技术、人工智能引领矿山向绿色、低碳发展。资源回收利用技术快速进步,大宗矿产资源回收利用率超50%,战略性新兴矿产回收利用具有发展潜力。

《报告》预计,全球经济和矿业发展面临不确定性和不均衡性。长期来看,坚持人类命运共同体理念,深入落实全球发展倡议、全球安全倡议、全球文明倡议,加强全球矿业市场要素信息共享和矿业产业链供应链稳定融合,促进国际矿业合作,定能推进全球矿业可持续发展。

脚注

中国自然资源报)

http://www.goldsci.ac.cn/article/2023/1005-2518/1005-2518-2023-31-5-785.shtml

Brady B H G Brown E T1985.Rock Mechanics for Underground Mining[M].London:George Allen Unwin.

Cao Guangming2019.Abnormal Subsidence Mechanism of Caving Mining Face with Thick Unconsolidated Layers and Collapse Columns[D].Beijing:China University of Mining and Technology-Beijing.

Cao Jiayuan Ma Fengshan Guo Jie,et al,2019.Study on subsidence prediction of inclined orebody cut and fill mining in seabed[J].Gold Science and Technology27(4):522-529.

Ding Deqiang2007.Study on Theory and Technology of Paste Filling in Underground Goaf of Mine[D].Changsha:Central South University.

He Yueguang Liu Baochen2003.Stochastic medium model and monito of surface movements due to excavation[J].Nonferrous Metals Science and Engineering17(1):20-24.

Jiang Jianping Zhang Yangsong Yan Changhong,et al,2002. Study on strata displacement under fault effect in underground engineering[J].Chinese Journal of Rock Mechanics and Engineering21(8):1257-1262.

Kalenchuk K S McKinnon S Diederichs M S2008.Block geometry and rockmass characterization for prediction of dilution potential into sub-level cave mine voids[J].International Journal of Rock Mechanics and Mining Sciences,45:929-940.

Kang Xinliang Cai Yinfei2021.Analysis of mining subsidence law under the compound influence of various geological and mining factors[J].Mining Safety and Environmental Protection48(4):75-80.

Knothe S1952.Time influence on a formation of a subsidence surface[J].Archiwum Gornictwa i Hutnictwa,Krakow(in Polish),1(1):1.

Laubscher D H1994.Cave mining-the state of the art[J].The Journal of the Southern African Institute of Mining and Metallurgy94(10):279-293.

Li Wei Chen Chen2003.Extraction technology of ocean mining[J].China Mining Magazine12(1):44-46,51.

Liu Donghai Deng Niandong Yao Ting2020.Analysis of main controlling factors of coal mining subsidence in Lu’an mining area[J].Mining Safety and Environmental Protection47(5):103-107.

Liu Yucheng Dai Huayang2019.Hyperbolic function model for predicting the main section surface deformation curve due to approximate horizontal coal seam underground longwall mining[J].Journal of China University of Mining and Technology48(3):676-681.

Mei Songhua Sheng Qian Li Wenxiu2004.Advances in research on surface and rock mass movement[J].Chinese Journal of Rock Mechanics and Engineering,(Supp.l):4535-4539.

Shi Jibiao2021. Efficient statistical method for settlement prediction parameters of probability integral method[J].Energy Technology and Management46(6):197-200.

Unlu T Akcin H Yilmaz O2013.An integrated approach for the prediction of subsidence for coal mining basins[J].Engineering Geology,166:186-203.

Xu Yuhai Xu Xinqi2004.Rheologic behavior of high-density backfill and reasonable determination of the parameters for its gravity-flow transport[J].Mining and Metallurgy13(3):16-19.

Yang W Xia X2013.Prediction of mining subsidence under thin bedrocks and thick unconsolidated layers based on filed measurement and artificial neural networks[J].Computers & Geosciences,52:199-203.

Zeng Zhuoqiao1980.Physical significance and correct application of parameters of negative exponential function method for calculating surface movement[J].Mine Surveying,(2):28-35.

Zhang Chao Song Weidong Fu Jianxin,et al,2020.Stability analysis of rock mass under disturbance of submarine mine[J].Journal of China University of Mining and Technology49(6):1035-1045.

Zhang Yujun Zhang Zhiwei2020.Research progress of mining overlying stratus failure law and control technology[J].Coal Science and Technology48(11):85-97.

曹光明,2019.陷落柱影响下厚松散层放顶煤工作面地表异常沉陷机理[D].北京:中国矿业大学(北京).

曹家源,马凤山,郭捷,等,2019.海底倾斜矿体开采沉陷预测研究[J].黄金科学技术27(4):522-529.

丁德强,2007.矿山地下采空区膏体充填理论与技术研究[D].长沙:中南大学.

贺跃光,刘宝琛,2003.工程开挖地表移动的随机介质模型及监测技术[J].江西有色金属17(1):20-24.

蒋建平,章杨松,阎长虹,等,2002.地下工程中岩移的断层效应探讨[J].岩石力学与工程学报21(8):1257-1262.

康新亮,蔡音飞,2021.多种地质采矿因素复合影响下开采沉陷规律分析[J].矿业安全与环保48(4):75-80.

李伟,陈晨,2003.海洋矿产开采技术[J].中国矿业12(1):44-46,51.

刘东海,邓念东,姚婷,2020.潞安矿区煤炭开采沉陷主要控制因素分析[J].矿业安全与环保47(5):103-107.

刘玉成,戴华阳,2019.近水平煤层开采沉陷预计的双曲线剖面函数法[J].中国矿业大学学报48(3):676-681.

梅松华,盛谦,李文秀,2004.地表及岩体移动研究进展[J].岩石力学与工程学报,(增1):4535-4539.

史继彪,2021.概率积分法沉降预测参数高效统计方法[J].能源技术与管理46(6):197-200.

许毓海,许新启,2004.高浓度(膏体)充填流变特性及自流输送参数的合理确定[J].矿冶13(3):16-19.

曾卓乔,1980.地表移动计算负指数函数法参数的物理意义及其正确运用[J].矿山测量,(2):28-35.

张超,宋卫东,付建新,等,2020.海底矿山开采扰动下岩体稳定性分析[J].中国矿业大学学报49(6):1035-1045.

张玉军,张志巍,2020.煤层采动覆岩破坏规律与控制技术研究进展[J].煤炭科学技术48(11):85-97.

文章导航

/

[an error occurred while processing this directive]