img

QQ群聊

img

官方微信

  • CN 62-1112/TF 
  • ISSN 1005-2518 
  • 创刊于1988年
高级检索
采选技术与矿山管理

三山岛金矿海底开采井下沉降特点及影响因素浅析

  • 张国栋 ,
  • 刘佳 ,
  • 马凤山 ,
  • 李光 ,
  • 郭捷
展开
  • 1.山东黄金矿业(莱州)有限公司三山岛金矿,山东 莱州 261442
    2.中国科学院地质与地球物理研究所,中国科学院页岩气与地质工程重点实验室,北京 100029
    3.中国科学院地球科学研究院,北京 100029
    4.中国科学院大学,北京 100049
张国栋(1974-),男,山东莱州人,工程师,从事矿山工程测量工作。zhanggd@sd-gold.com

收稿日期: 2023-01-09

  修回日期: 2023-04-09

  网络出版日期: 2023-11-21

基金资助

国家自然科学基金重点项目“海底采矿对地质环境的胁迫影响与致灾机理”(41831293)

Analysis on the Characteristics and Influencing Factors of Underground Settlement in Submarine Mining of Sanshandao Gold Mine

  • Guodong ZHANG ,
  • Jia LIU ,
  • Fengshan MA ,
  • Guang LI ,
  • Jie GUO
Expand
  • 1.Sanshandao Gold Mine, Shandong Gold Mining(Laizhou) Co. , Ltd. , Laizhou 261442, Shandong, China
    2.Key Laboratory of Shale Gas and Geoengineering, Institute of Geology and Geophysics, Chinese Academy of Sciences, Beijing 100029, China
    3.Innovation Academy for Earth Science, Chinese Academy of Sciences, Beijing 100029, China
    4.University of Chinese Academy of Sciences, Beijing 100049, China

Received date: 2023-01-09

  Revised date: 2023-04-09

  Online published: 2023-11-21

摘要

三山岛金矿新立矿区是我国首例实施海底开采的金属矿山。为了研究新立矿区井下矿体围岩变形破坏特征,以与矿体走向垂直的55号勘探线为监测剖面,通过布设井下四等水准监测系统,对55号勘探线剖面内不同深度开采中段巷道顶板围岩的垂直位移进行了长期监测。分析结果表明:(1)海底不同深度各中段矿体开采引起的变形均表现为对上盘岩体的影响范围大,而对下盘岩体影响范围小,越靠近矿体(或控矿断层F1)部位,顶板围岩的下沉量越大;(2)各中段的累积沉降量曲线总体上表现为不对称漏斗形,其中较浅部的-200 m中段与-240 m中段累积沉降量曲线底部较为平缓,呈近似“锅”状,而深部的-320 m、-400 m、-480 m和-600 m中段沉降曲线呈“漏斗”状;(3)新立矿区矿体厚度、开采深度、开采强度、围岩岩性、围岩岩体结构以及充填效果是影响海底倾斜矿体开采围岩变形的因素,其中,矿区内控矿断层F1的存在直接影响围岩变形曲线的形态。

本文引用格式

张国栋 , 刘佳 , 马凤山 , 李光 , 郭捷 . 三山岛金矿海底开采井下沉降特点及影响因素浅析[J]. 黄金科学技术, 2023 , 31(5) : 785 -793 . DOI: 10.11872/j.issn.1005-2518.2023.05.011

Abstract

In recent years,with the decrease of land mineral resources,the development of marine minerals has become a global emerging industry,especially the mining of coastal bedrock deposits under the sea,has been the focus of mining development in various countries.For large-scale mining under the sea,the movement and deformation of the submarine rockbody poses a major threat to mining safety.It is important to pay attention to the deformation damage of the surrounding rock,which is important to realize the safe and efficient production of submarine mines. In order to study the deformation and damage characteristics of the surrounding rocks of the underground mine body in the Xinli mining area,the 55 exploration line perpendicular to the mine body was used as the monitoring profile,and the roadway roofs of -200 m,-240 m,-320 m,-400 m,-480 m,and -600 m sublevels were monitored by the underground four-level monitoring system that has been deployed since December 2015.The vertical displacements of the surrounding rocks in sublevels of the roadway at -200 m,-240 m,-320 m,-400 m,-480 m and -600 m were monitored for a long time,and the time series data of the settlement of the roadway roof in each sublevel were obtained.The deformation of the surrounding rock caused by metal ore mining is a complex mechanical problem.By analyzing the multi-year monitoring results,several significant characteristics of underground settlement are revealed.(1)The deformation caused by mining of the orebody in sublevel at different depths of the seabed shows a large influence range on the rock mass of the fault hanging wall,while the influence range on the footwall rock mass is small.(2)The closer to the orebody(or the ore-control fault F1) the greater the subsidence of the rock body,forming the feature that the slope of the curve to the left of the maximum settlement point in the settlement curve is larger in absolute value,while the slope of the curve to the right is slightly smaller in absolute value.(3)The final subsidence curves of the six sublevels in the line 55 profile have similar shapes and are generally asymmetric funnel-shaped,with the -200 m sublevel and the -240 m sublevel having a gentle bottom of the cumulative subsidence curve,which is similar to a “pot”,while the -320 m,-400 m,-480 m and -600 m sublevels have a “funnel” shaped subsidence curve.This phenomenon is related to the mining activities in the mine area.(4)The single settlement value in any monitoring period in the sublevel at any depth has the characteristics of up and down fluctuation,which reflects the non-linear characteristics of settlement deformation to a certain extent.The practice of seabed mining in Sanshandao gold mine confirms that:Since 2005,with the expansion of mining scale,the increase of mining intensity and the extension of mining years,the deformation of some of the underground tunnels is serious,and the movement and deformation of the underground surrounding rocks may cause seawater to gush into the tunnels along the damaged rocks,thus threatening the life safety of mining personnel.The study concluded that the thickness of the orebody,mining depth,mining intensity,surrounding lithology and rock structure as well as filling effect in the Xinli mining area are potential factors affecting the deformation of the surrounding rock in the mining of the inclined orebody.Among them,the presence of the controlling fault F1 in the mine area directly affects the shape of the surrounding rock deformation curve,and this deformation feature should be considered in future production work as well as safety maintenance work(roadway repair work) to prevent from affecting productivity or even generating safety accidents.

参考文献

null Brady B H G, Brown E T,1985.Rock Mechanics for Underground Mining[M].London:George Allen Unwin.
null Cao Guangming,2019.Abnormal Subsidence Mechanism of Caving Mining Face with Thick Unconsolidated Layers and Collapse Columns[D].Beijing:China University of Mining and Technology-Beijing.
null Cao Jiayuan, Ma Fengshan, Guo Jie,et al,2019.Study on subsidence prediction of inclined orebody cut and fill mining in seabed[J].Gold Science and Technology,27(4):522-529.
null Ding Deqiang,2007.Study on Theory and Technology of Paste Filling in Underground Goaf of Mine[D].Changsha:Central South University.
null He Yueguang, Liu Baochen,2003.Stochastic medium model and monito of surface movements due to excavation[J].Nonferrous Metals Science and Engineering,17(1):20-24.
null Jiang Jianping, Zhang Yangsong, Yan Changhong,et al,2002. Study on strata displacement under fault effect in underground engineering[J].Chinese Journal of Rock Mechanics and Engineering,21(8):1257-1262.
null Kalenchuk K S, McKinnon S, Diederichs M S,2008.Block geometry and rockmass characterization for prediction of dilution potential into sub-level cave mine voids[J].International Journal of Rock Mechanics and Mining Sciences,45:929-940.
null Kang Xinliang, Cai Yinfei,2021.Analysis of mining subsidence law under the compound influence of various geological and mining factors[J].Mining Safety and Environmental Protection,48(4):75-80.
null Knothe S,1952.Time influence on a formation of a subsidence surface[J].Archiwum Gornictwa i Hutnictwa,Krakow(in Polish),1(1):1.
null Laubscher D H,1994.Cave mining-the state of the art[J].The Journal of the Southern African Institute of Mining and Metallurgy,94(10):279-293.
null Li Wei, Chen Chen,2003.Extraction technology of ocean mining[J].China Mining Magazine,12(1):44-46,51.
null Liu Donghai, Deng Niandong, Yao Ting,2020.Analysis of main controlling factors of coal mining subsidence in Lu’an mining area[J].Mining Safety and Environmental Protection,47(5):103-107.
null Liu Yucheng, Dai Huayang,2019.Hyperbolic function model for predicting the main section surface deformation curve due to approximate horizontal coal seam underground longwall mining[J].Journal of China University of Mining and Technology,48(3):676-681.
null Mei Songhua, Sheng Qian, Li Wenxiu,2004.Advances in research on surface and rock mass movement[J].Chinese Journal of Rock Mechanics and Engineering,(Supp.l):4535-4539.
null Shi Jibiao,2021. Efficient statistical method for settlement prediction parameters of probability integral method[J].Energy Technology and Management,46(6):197-200.
null Unlu T, Akcin H, Yilmaz O,2013.An integrated approach for the prediction of subsidence for coal mining basins[J].Engineering Geology,166:186-203.
null Xu Yuhai, Xu Xinqi,2004.Rheologic behavior of high-density backfill and reasonable determination of the parameters for its gravity-flow transport[J].Mining and Metallurgy,13(3):16-19.
null Yang W, Xia X,2013.Prediction of mining subsidence under thin bedrocks and thick unconsolidated layers based on filed measurement and artificial neural networks[J].Computers & Geosciences,52:199-203.
null Zeng Zhuoqiao,1980.Physical significance and correct application of parameters of negative exponential function method for calculating surface movement[J].Mine Surveying,(2):28-35.
null Zhang Chao, Song Weidong, Fu Jianxin,et al,2020.Stability analysis of rock mass under disturbance of submarine mine[J].Journal of China University of Mining and Technology,49(6):1035-1045.
null Zhang Yujun, Zhang Zhiwei,2020.Research progress of mining overlying stratus failure law and control technology[J].Coal Science and Technology,48(11):85-97.
null 曹光明,2019.陷落柱影响下厚松散层放顶煤工作面地表异常沉陷机理[D].北京:中国矿业大学(北京).
null 曹家源,马凤山,郭捷,等,2019.海底倾斜矿体开采沉陷预测研究[J].黄金科学技术,27(4):522-529.
null 丁德强,2007.矿山地下采空区膏体充填理论与技术研究[D].长沙:中南大学.
null 贺跃光,刘宝琛,2003.工程开挖地表移动的随机介质模型及监测技术[J].江西有色金属,17(1):20-24.
null 蒋建平,章杨松,阎长虹,等,2002.地下工程中岩移的断层效应探讨[J].岩石力学与工程学报,21(8):1257-1262.
null 康新亮,蔡音飞,2021.多种地质采矿因素复合影响下开采沉陷规律分析[J].矿业安全与环保,48(4):75-80.
null 李伟,陈晨,2003.海洋矿产开采技术[J].中国矿业,12(1):44-46,51.
null 刘东海,邓念东,姚婷,2020.潞安矿区煤炭开采沉陷主要控制因素分析[J].矿业安全与环保,47(5):103-107.
null 刘玉成,戴华阳,2019.近水平煤层开采沉陷预计的双曲线剖面函数法[J].中国矿业大学学报,48(3):676-681.
null 梅松华,盛谦,李文秀,2004.地表及岩体移动研究进展[J].岩石力学与工程学报,(增1):4535-4539.
null 史继彪,2021.概率积分法沉降预测参数高效统计方法[J].能源技术与管理,46(6):197-200.
null 许毓海,许新启,2004.高浓度(膏体)充填流变特性及自流输送参数的合理确定[J].矿冶,13(3):16-19.
null 曾卓乔,1980.地表移动计算负指数函数法参数的物理意义及其正确运用[J].矿山测量,(2):28-35.
null 张超,宋卫东,付建新,等,2020.海底矿山开采扰动下岩体稳定性分析[J].中国矿业大学学报,49(6):1035-1045.
null 张玉军,张志巍,2020.煤层采动覆岩破坏规律与控制技术研究进展[J].煤炭科学技术,48(11):85-97.
文章导航

/