img

QQ群聊

img

官方微信

  • CN 62-1112/TF 
  • ISSN 1005-2518 
  • 创刊于1988年
高级检索
采选技术与矿山管理

CNN-LSTM模型在边坡可靠度分析中的应用

  • 荣光旭 ,
  • 李宗洋
展开
  • 1.安徽工业经济职业技术学院地质与建筑工程学院,安徽 合肥 230051
    2.安徽省地勘局第一水文工程地质勘查院,安徽 蚌埠 233000
荣光旭(1986-),男,安徽桐城人,讲师,从事岩土结构稳定分析研究工作。506774520@qq.com

收稿日期: 2022-11-12

  修回日期: 2023-02-03

  网络出版日期: 2023-09-20

基金资助

国家重点研发计划项目“强震区特大型泥石流防控标准化体系及示范应用”(2018YFC1505406);安徽省高校自然科学研究项目“深度学习在边坡稳定分析应用中的原理·方法·程序”(KJ2021A1536)

Application of CNN-LSTM Model in Slope Reliability Analysis

  • Guangxu RONG ,
  • Zongyang LI
Expand
  • 1.School of Geology and Construction Engineering, Anhui Technical College of Industry and Economy, Hefei 230051, Anhui, China
    2.The First Institute of Hydrology and Engineering Geological Prospecting, Anhui Geological Prospecting Bureau, Bengbu 233000, Anhui, China

Received date: 2022-11-12

  Revised date: 2023-02-03

  Online published: 2023-09-20

摘要

为了准确高效地对边坡可靠度进行分析,在对420个边坡数据进行整理分析的基础上,建立了基于卷积神经网络(Convolutional Neural Network,CNN)与长短时记忆网络(Long Short-Term Memory,LSTM)的混合可靠度分析模型。首先,通过CNN模块提取数据特征;其次,构建LSTM模块并对边坡失效概率进行预测;然后,通过5因素4水平正交表L16对模型超参数进行优化;最后,通过2个算例进行对比验证。结果表明:(1)相比传统的蒙特卡洛法(MCS),CNN-LSTM模型预测失效概率相对误差仅为4.35%,而一次二阶矩法和响应面法相对误差为169.6%;在计算耗时方面,CNN-LSTM模型耗时45 s,MCS耗时119 s,CNN-LSTM模型效率比MCS提高了近2倍。(2)对比分析CNN、LSTM模型和多元线性回归模型(Multiple Linear Regression,MLR)等多种机器学习方法用于可靠度分析方面的计算性能,得出CNN-LSTM模型边坡失效概率预测相对误差远远小于CNN(104%)、LSTM(91.3%)和MLR(34.78%)的相对误差,且计算耗时最少;(3)算例验证了CNN-LSTM模型在边坡可靠度分析方面具有可行性和优越性。

本文引用格式

荣光旭 , 李宗洋 . CNN-LSTM模型在边坡可靠度分析中的应用[J]. 黄金科学技术, 2023 , 31(4) : 613 -623 . DOI: 10.11872/j.issn.1005-2518.2023.04.171

Abstract

When the traditional limit equilibrium method is used for slope reliability analysis,because of the performance function is implicit and the form is complicated,the iterative process of solving the function becomes complicated and the computational efficiency is low.Aiming at the above problems,a CNN-LSTM model method was proposed.The principle of this method is to first extract the data features by using convolutional neural network(CNN),and then predict the slope failure probability by using short and long time memory network(LSTM).On the basis of fully considering the value range of the CNN-LSTM model’s hyperparameters,the five-factor and four-level orthogonal test table was used to design the hyperparameters.Finally,the convolutional output dimension of the first layer and the second layer of the CNN network architecture in the CNN-LSTM model were determined to be 64 and 8 respectively.Dropout ratio is 0.5,the number of the first layer of the LSTM structure is 5 units and the number of the second layer of hidden layers is 20 units,respectively.The 420 slope sample data collected from central and western regions of China were used to train the model according to the ratio of 7∶3 between the training set and the verification set,and the optimal parameters of the CNN-LSTM model were obtained. Finally,Yanshanji landslide was taken as an example to illustrate the feasibility of the model method.The CNN-LSTM model was compared with Monte Carlo method(MCS),response surface method,single CNN,LSTM model and multiple linear regression model in terms of computational efficiency and failure probability prediction.The results show that:(1)When the MCS sampling times is 10 000,compared with the traditional MCS,although the CNN-LSTM model has a relative error of 4.35% in predicting the slope failure probability,in terms of computational efficiency,the CNN-LSTM model takes 45.28 s and the MCS takes 119 s,so the CNN-LSTM model increases the efficiency nearly 2 times.(2)When the single CNN model and LSTM model both adopt two-layer architecture,although the number of parameters of the CNN-LSTM model is not optimal,it has excellent performance in terms of calculation time and prediction accuracy of failure probability due to the small overfitting risk of the model.Compared with the multiple linear regression model,the relative error of CNN-LSTM prediction is 4.35%,and that of multiple linear regression is 34.78%.Through the above two points,the CNN-LSTM model can well complete the analysis of slope reliability,and avoid solving the implicit performance function,and the work efficiency is high.

参考文献

null Ahmed R, Sreeram V, Mishra Y,et al,2020.A review and evaluation of the state of the art in PV solar power forecasting:Techniques and optimization[J].Renewable and Sustainable Energy Reviews,124:109792.
null An Zhengming, Fang Zhengfeng, Zhou Xingtong,et al,2022.Reliability analysis of the slope stability of the soil disposal area in a mountainous highway construction[J].Soil Engineering and Foundation,36(4):626-629.
null Bisharad D, Laskar R H,2019.Music genre recognition using convolutional recurrent neural network architecture[J].Expert Systems,36(4):e12429.
null Chen K, Zhou Y, Dai F,2015.A LSTM-based method for stock returns prediction:A case study of China stock market[C]//IEEE International Conference on Big Data.Santa Clara:IEEE.
null Chen T, Xu R, He Y,et al,2017.Improving sentiment analysis via sentence type classification using BiLSTM-CRF and CNN[J].Expert Systems with Applications,72:221-230.
null Das S K, Biswal R K, Sivakugan N,et al,2011.Classification of slopes and prediction of factor of safety using differential evolution neural networks[J].Environmental Earth Sciences,64(1):201-210.
null Devesa R, Moldes A, Diaz-Fierros F,et al,2007.Extraction study of algal pigments in river bed sediments by applying factorial designs[J].Talanta,72(4):1546-1551.
null Diederik P K, Jimmy B,2016.Adam:A method for stochastic optimization[C]//The 4th International Conference on Learning Representations(ICLR),2016.San Juan,Puerto Rico:International Machine Learning Society.
null Duan Nan, Xue Huimin, Pan Yue,2002.A method for determining the number realizations in the calculation of reliability by Monte Carlo simulation method[J].Coal Mine Machinery,(3):13-14.
null Graves A, Jaitly N, Mohamed A,2013.Hybrid speech recognition with deep bidirectional LSTM[C]//2013 IEEE Workshop on Automatic Speech Recognition and Understanding.Xi’an:IEEE: 273-278.
null Huang Zhuotao,2022.Reliability Analysis of Heterogeneous Reservoir Slopes Using Machine Learning Algorithms[D].Nanchang:Nanchang University.
null Ji Jian, Jiang Zhen, Yin Xin,et al,2022.Slope reliability analysis based on deep learning of digital images of random fields using CNN[J].Chinese Journal of Geotechnical Engineering,44(8):1463-1473.
null Jiang Shuihua, Li Dianqing, Zhou Chuangbing,2013.Non-intrusive stochastic finite element method for slope reliability analysis based on Latin hypercube sampling[J].Chinese Journal of Geotechnical Engineering,35(Supp.2):70-76.
null Liu C, Hou W, Liu D,2017.Foreign exchange rates forecasting with convolutional neural network[J].Neural Processing Letters,46(2):1095-1119.
null Liu Y, Zhao Z, Zhang S,et al,2020.Identification of abnormal processes with spatial-temporal data using convolutional neural networks[J].Processes,8(1):73-91.
null Niu Caoyuan, Wang Lehua, Xu Xiaoliang,2017.Study on impact from statistical characteristics of soil mass shear strength parameters on slope reliability[J].Water Resources and Hydropower Engineering,48(12):195-198,206.
null Pedregosa F, Varoquaux G,et al,2011.Scikit-learn:Machine learning in python[J].Journal of Machine Learn Research,12:2825-2830.
null Rawat W, Wang Z,2017.Deep convolutional neural networks for image classification:A comprehensive review[J].Neural Computer,29(9):2352-2449.
null Rong Guangxu, Peng Yan, Tian Kai,2021.Application of ABAQUS finite element strength reduction program based on Python in slope stability analysis[J].Journal of North University of China(Natural Science Edition),42(4):332-339.
null Shu Suxun, Gong Wenhui,2014.Fuzz random reliability analysis of slopes considering spatial variability of soil parameters[J].Huazhong University of Science and Technology(Natural Science Edition),42(9):93-97.
null Suman S, Khan S Z, Das S K,et al,2016.Slope stability analysis using artificial intelligence techniques[J].Natural Hazards,84(2):727-748.
null Sun X, Li C, Ren F,2016.Sentiment analysis for Chinese microblog based on deep neural networks with convolutional extension features[J].Neurocomputing,210:227-236.
null Wan H B, Lan W G, Wong M K,et al,1994.Orthogonal array designs for the optimization of liquid chromatographic analysis of pesticides[J].Analytica Chimica Acta,289(3):371-380.
null Wang Chaoyang, Li Limin, Wen Zongzhou,et al,2022.Dynamic prediction of landslide displacement based on time series and CNN-LSTM[J].Foreign Electronic Measurement Technology,41(3):1-8.
null Wang Z Z, Goh S G,2021.Novel approach to efficient slope reliability analysis in spatially variable soils[J].Engineering Geology,281:105989.
null Xie Xiudong, Fang Jianrui, Fan Wei,et al,2008.Research on analysis of slope stability based on reliability theory[J].Journal of Natural Disasters,17(2):110-115.
null Xu Xiaoyuan, Wang Han, Yan Zheng,et al,2021.Overview of power system uncertainty and its solutions under energy transition[J].Automation of Electric Power Systems,45(16):2-13.
null Xue X,2017.Prediction of slope stability based on hybrid PSO and LSSVM[J].Journal of Computing in Civil Engineering,31(1):04016041.
null Yang L Q, Li P C, Fan S J,2008.The extraction of pigments from fresh Laminaria japonica[J].Chinese Journal of Oceanology and Limnology,26(2):193-196.
null Zong Guangchang,2021.Study on Slope Displacement Prediction Based on Conv-LSTM[D].Shijiazhuang:Shijiazhuang Tiedao University.
null 安正明,方正峰,周兴彤,等,2022.山区高速公路弃渣场边坡稳定性可靠度分析[J].土工基础,36(4):626-629.
null 段楠,薛会民,潘越,2002.用蒙特卡洛法计算可靠度时模拟次数的选择[J].煤矿机械,(3):13-14.
null 黄卓涛,2022.基于机器学习算法的非均质水库边坡可靠度分析[D].南昌:南昌大学.
null 姬建,姜振,殷鑫,等,2022.边坡随机场数字图像特征CNN深度学习及可靠度分析[J].岩土工程学报,44(8):1463-1473.
null 蒋水华,李典庆,周创兵,2013.基于拉丁超立方抽样的边坡可靠度分析非侵入式随机有限元法[J].岩土工程学报,35(增2):70-76.
null 牛草原,王乐华,许晓亮,2017.土体抗剪强度参数统计特性对边坡可靠性影响研究[J].水利水电技术,48(12):195-198,206.
null 荣光旭,彭艳,田凯,2021.基于Python的ABAQUS有限元强度折减法程序在边坡稳定性分析中的应用[J].中北大学学报(自然科学版),42(4):332-339.
null 舒苏荀,龚文惠,2014.考虑参数空间变异性的边坡模糊随机可靠度分析[J].华中科技大学学报(自然科学版),42(9):93-97.
null 王朝阳,李丽敏,温宗周,等,2022.基于时间序列和CNN-LSTM的滑坡位移动态预测[J].国外电子测量技术,41(3):1-8.
null 谢秀栋,方建瑞,范炜,等,2008.基于可靠度理论的边坡稳定性分析研究[J].自然灾害学报,17(2):110-115.
null 徐潇源,王晗,严正,等,2021.能源转型背景下电力系统不确定性及应对方法综述[J].电力系统自动化,45(16):2-13.
null 宗广昌,2021.基于Conv-LSTM的边坡位移预测研究[D].石家庄:石家庄铁道大学.
文章导航

/