img

QQ群聊

img

官方微信

  • CN 62-1112/TF 
  • ISSN 1005-2518 
  • 创刊于1988年
高级检索
采选技术与矿山管理

基于红外图像的矿石传送带托辊异常检测

  • 阮顺领 ,
  • 阮炎康 ,
  • 卢才武 ,
  • 顾清华
展开
  • 1.西安建筑科技大学资源工程学院,陕西 西安 710055
    2.西安市智慧工业感知计算与决策重点实验室,陕西 西安 710055
阮顺领(1981-),男,河南西华人,副教授,博士,从事矿山智能科学与工程研究工作。ruanshunling@163.com

收稿日期: 2022-08-05

  修回日期: 2022-11-20

  网络出版日期: 2023-03-27

基金资助

国家自然科学基金项目“地下金属矿山岩体破坏多源异质流数据智能融合与态势评估研究”(51974223);陕西省自然科学基金项目“多模态融合学习下尾矿坝安全态势感知与协同预警研究”(2022JM-201)

Detection of Ore Conveyer Roller Based on Infrared Image

  • Shunling RUAN ,
  • Yankang RUAN ,
  • Caiwu LU ,
  • Qinghua GU
Expand
  • 1.School of Resource Engineering, Xi’an University of Architecture and Technology, Xi’an 710055, Shaanxi, China
    2.Xi’an Key Laboratory of Intelligent Industry Perception Computing and Decision Making, Xi’an 710055, Shaanxi, China

Received date: 2022-08-05

  Revised date: 2022-11-20

  Online published: 2023-03-27

摘要

为了解决传统的传送带托辊异常检测方法效率低、实时性差等问题,提出一种基于红外图像识别的托辊异常检测模型。通过现场采集并使用标签平滑和Mosaic数据增强处理对托辊红外图像数据集进行扩充,降低模型的训练成本。在特征提取模块提出使用GhostNet骨干特征提取网络,能够有效地降低特征提取所需成本。在特征融合模块,提出使用SPP-Net模块优化PaNet特征融合网络,增加模型的感受野。通过深度可分离卷积块简化模型结构,降低模型的计算量和参数量,并通过LeakyReLU激活函数提高模型的学习能力。试验结果表明:该检测模型能够有效识别托辊异常。在实际检测中,该方法在托辊检测中平均准确率达到94.9%,检测速度达到39.2 FPS,为矿山传送带托辊的准确高效巡检提供了保障。

本文引用格式

阮顺领 , 阮炎康 , 卢才武 , 顾清华 . 基于红外图像的矿石传送带托辊异常检测[J]. 黄金科学技术, 2023 , 31(1) : 123 -132 . DOI: 10.11872/j.issn.1005-2518.2023.01.099

Abstract

With the development of intelligent construction of mine,the detection of mine equipment is becoming more and more intelligent.The ore conveyor belt is one of the important production equipment in the mine,and the abnormal detection of the conveyor roller is one of the important contents of mine safety.At present,most of the ore conveyor roller inspection is manual inspection,and depends on the personal experience of the inspector to judge the working status of the roller,which will lead to problems such as the damage of the roller is not found in time.Therefore,it is urgent to study a more objective,intelligent and efficient method for abnormal detection of rollers.In order to solve the problems of low efficiency and poor real-time performance of the traditional ore conveyor roller anomaly detection method,an optimization model of ore conveyor roller anomaly detection based on infrared image recognition was proposed.The infrared image of the roller was collected on the spot and the infrared image data set of the roller was expanded by using label smoothing and Mosaic data enhancement processing to prevent the overfitting of the detection model and reduce the training cost of the model.In the feature extraction module,it was proposed to use GhostNet backbone feature extraction network,which can effectively reduce the image redundancy produced by feature extraction,accelerate the learning speed of the model,and further optimize the backbone feature extraction network through LeakyReLU activation function to improve the learning ability of the model.In the feature fusion module,multi-dimensional feature fusion was realized through the feature pyramid structure and the bottom-up feature fusion layer,and the SPP-Net module was used to optimize the PaNet feature fusion network to increase the effective receptive field of the model.And through the depth separable convolution block to simplify the model structure,reduce the amount of calculation and the number of parameters of the model.The experimental results show that,compared with the mainstream detection model,the detection model can more effectively identify rollers and distinguish between normal and abnormal rollers.In the actual detection,the detection accuracy of the idlers is 96.2%,the recall rate is 95.9%,and the average detection accuracy is 94.9%,in which the accuracy of abnormal rollers is 99.6%,the accuracy of normal rollers is 90.2%,the detection speed is 39.2 FPS,and the number of model parameters is only 1.1×107.The method provides a guarantee for accurate and efficient inspection of mine conveyor rollers.

参考文献

null Bochkovskiy A, Wang C Y, Liao H Y M,2020.Yolov4:Optimal speed and accuracy of object detection[J].arXiv,2004.10934.
null Cao Guanqiang,2020.Fault detection method for belt conveyor roller[J].Industry and Mine Automation,46(6):81-86.
null Guo Qinghua,2018.Research on roller fault identification algorithm of belt conveyor system based on fiber temperature measurement technology[J].Coal Mine Machinery,39(8):157-160.
null Han K, Wang Y, Tian Q,et al,2020.Ghostnet:More features from cheap operations[C]//IEEE Conference on Computer Vision and Pattern Recognition(CVPR).Seattle:IEEE.
null Hao Hongtao, Ni Fanfan, Ding Wenjie,2019.Fault diagnosis method of rollers based on sound signals [J].Noise and Vibration Control,39(3):187-192.
null He K, Zhang X, Ren S,et al,2015.Spatial pyramid pooling in deep convolutional networks for visual recognition[J].IEEE Transactions on Pattern Analysis and Machine Intelligence,37(9):1904-1916.
null Ioffe S, Szegedy C,2015.Batch normalization:Accelerating deep network training by reducing internal covariate shift[J].arXiv,1502.03167.
null Lin T Y, Goyal P, Girshick R,et al,2017.Focal loss for dense object detection[C]//IEEE International Conference on Computer Vision(ICCV).Venice:IEEE.
null Liu Fen,2020.Fault diagnosis of roller of belt conveyor based on big data technology[J].Coal Mine Machinery,41(8):177-179.
null Liu S, Qi L, Qin H,et al,2018.Path aggregation network for instance segmentation[C]//IEEE Conference on Computer Vision and Pattern Recognition(CVPR).Salt Lake City:IEEE.
null Liu W, Anguelov D, Erhan D,et al,2016.Ssd:Single shot multibox detector[C]//European Conference on Computer Vision(ECCV).Amsterdam:IEEE.
null Ravikumar S, Kanagasabapathy H, Muralidharan V,2019.Fault diagnosis of self-aligning troughing rollers in belt conveyor system using k-star algorithm[J].Measurement,133:341-349.
null Redmon J, Divvala S, Girshick R,et al,2016.You only look once:Unified,real-time object detection[C]// IEEE Conference on Computer Vision and Pattern Recognition(CVPR).Las Vegas:IEEE.
null Ren S, He K, Girshick R,et al,2017.Faster r-cnn:Towards real-time object detection with region proposal networks[J].IEEE Transactions on Pattern Analysis and Machine Intelligence,39(6):1137-1149.
null Song Tianxiang, Yang Mingjin, Yang Linshun,et al,2019.Fault diagnosis for roller based on spectral clustering analysis[J].Electronic Measurement Technology,42(5):144-150.
null Su Hui, Niu Linkai, Zhang Kun,2018.Design of roller fault monitoring system based on ZigBee wireless sensor network[J].Coal Engineering,50(7):14-17.
null Sun Wei, Diao Dongmei,2016.Roller fault detection of belt convey or based on φ-OTDR technology [J].Industry and Mine Automation,42(8):9-12.
null Szegedy C, Vanhoucke V, Ioffe S,et al,2016.Rethinking the inception architecture for computer vision[C]//IEEE Conference on Computer Vision and Pattern Recognition(CVPR).Las Vegas:IEEE.
null Wang C Y, Liao H Y M, Wu Y H,et al,2020.CSPNet:A new backbone that can enhance learning capability of CNN[C]//IEEE Conference on Computer Vision and Pattern Recognition(CVPR).Seattle:IEEE.
null Xie Miao, Zhu Zhen, Lu Jinnan,2020.Research on detection method of roller jam based on infrared image processing technology[J].Machine Design and Research,36(5):152-157.
null Yang M, Zhou W, Song T,2020.Audio-based fault diagnosis for belt conveyor rollers[J].Neurocomputing,397:447-456.
null Yi Xin, Yang Mingjin, Yang Linshun,et al,2020.The KNN and SVM-based 2-level comprehensive health indicators diagnosis method for detecting the failure of belt conveyor’s idlers[J].Coal Preparation Technology,(5):94-102.
null Zhang X, Wan S, He Y,et al,2021.Teager energy spectral kurtosis of wavelet packet transform and its application in locating the sound source of fault bearing of belt conveyor[J].Measurement,173:108367.
null Zheng Z, Wang P, Ren D,et al,2021.Enhancing geometric factors in model learning and inference for object detection and instance segmentation[J].Transactions on Cybernetics,52(8):8574-8586.
null 曹贯强,2020.带式输送机托辊故障检测方法[J].工矿自动化,46(6):81-86.
null 郭清华,2018.基于光纤测温技术的带式输送机托辊故障识别算法研究[J].煤矿机械,39(8):157-160.
null 郝洪涛,倪凡凡,丁文捷,2019.基于声音信号的托辊故障诊断方法[J].噪声与振动控制,39(3):187-192.
null 刘芬,2020.基于大数据技术的带式输送机托辊故障诊断[J].煤矿机械,41(8):177-179.
null 宋天祥,杨明锦,杨林顺,等,2019.基于谱聚类分析的托辊故障诊断[J].电子测量技术,42(5):144-150.
null 苏辉,牛蔺楷,张琨,2018.基于ZigBee无线传感网络的托辊卡死故障监测系统设计[J].煤炭工程, 50(7):14-17.
null 孙维,刁冬梅,2016.基于φ-OTDR技术的带式输送机托辊故障检测[J].工矿自动化,42(8):9-12.
null 谢苗,朱振,卢进南,2020.基于红外图像处理技术的托辊卡阻检测方法[J].机械设计与研究,36(5):152-157.
null 伊鑫,杨明锦,杨林顺,等,2020.基于KNN与SVM两级综合健康指标的托辊故障诊断方法[J].选煤技术,(5):94-102.
文章导航

/