[an error occurred while processing this directive] [an error occurred while processing this directive]
[an error occurred while processing this directive]
黄晓辉(1995-),男,福建泉州人,硕士研究生,从事岩石力学及岩石工程稳定性分析研究工作。195512092@csu.edu.cn |
收稿日期: 2022-04-24
修回日期: 2022-05-31
网络出版日期: 2022-12-10
基金资助
国家自然科学基金项目“深部高应力岩体环境深孔一次爆破成井机理与方法研究”(51974360)
Study on Acoustic Emission and Microscopic Characteristics of Red Sandstone Under Compression-Shear After High Temperature
Received date: 2022-04-24
Revised date: 2022-05-31
Online published: 2022-12-10
为了评估岩体在高温和压剪工况下的稳定性,利用声发射技术对25~800 ℃处理后的红砂岩进行了变角剪切下声发射特性研究,分析了高温对红砂岩剪切断口微观特性的影响机理。结果表明:(1)高温作用使得红砂岩的声发射事件由常温下低活跃度的间接性活动向高活跃度的连续性活动转化;(2)随着热处理温度的升高,砂岩在压剪状态下的剪切裂纹所占比例逐渐增大,损伤剪切应力阈值减小,裂纹非稳定扩展阶段延长;(3)当剪切角度为55°时,高温对红砂岩的剪切损伤发展具有抑制作用,而当剪切角度为65°时具有促进作用;(4)红砂岩压剪断口形貌主要以沿晶体解理切断(穿晶断裂)形成,但当热处理温度为800 ℃时,更易于沿晶界形成。研究成果可为解决高温岩土工程问题提供参考。
黄晓辉 , 刘科伟 , 周占星 , 马泗洲 , 郭腾飞 . 高温后红砂岩压剪下声发射及其微观特性研究[J]. 黄金科学技术, 2022 , 30(5) : 764 -777 . DOI: 10.11872/j.issn.1005-2518.2022.05.058
In underground rock engineering,such as deep resource mining and underground nuclear waste repository construction,high temperature is one of the important factors affecting the stability of rock engine-ering structure.Meanwhile,compression-shear stress state is one of the common stress states of rock in engine-ering.Therefore,the research on acoustic emission characteristics and shear fracture micro mechanism of red sandstone under variable angle shear after high temperature treatment is of great significance to monitor and analyze the stability of rock in high temperature rock engineering.By analyzing the acoustic emission characteristics of red sandstone treated at 25~800 ℃ during the shear failure,it can be concluded that high temperature changes the acoustic emission characteristics and related parameters in the shear failure process of red sandstone,including AE event count,b value,RA-AF value and so on.At the same time,based on the acoustic emission characteristics,the influence of high temperature treatment on the shear failure characteristics of red sandstone was analyzed.In addition,the micro mechanism of shear fracture of red sandstone after high temperature was analyzed by electron microscope scanning technology.The test results show that: (1) High temperature makes the change trend of acoustic emission event of red sandstone from indirect activities with low-activity under room temperature to continuous activities with high-density,and the peak value of AE cumulative event count increases with the increase of treatment temperature.(2) According to the distribution characteristics of acoustic emission parameter RA-AF value,it can be concluded that high temperature treatment changes the crack type of red sandstone in compression shear failure,and the proportion of shear crack increases with the temperature increasing.(3) The change trend of AE cumulative event count can be used to judge the shear stress threshold of pore compaction,crack initiation and crack damage.According to the distribution characteristics of the proportion of shear stress threshold,it can be concluded that with the increase of temperature,the proportion of stable crack propagation stage decreases,but the proportion of unstable crack propagation increases.(4) The shear damage characteristics of red sandstone after high temperature treatment were defined by AE cumulative event count.It was found that when the shear angle is 55°,the high temperature treatment can inhibit the development of shear damage of red sandstone,and promote it at 65°.(5) The compression-shear fracture of the samples treated at different temperatures is mainly formed by cleavage along the crystal (trans-granular fracture),but at 800 ℃,it is more prone to failure along the grain boundary,the number of residual dimples increases,the plasticity increases and the degree of fragmentation decreases.The research results can provide reference for solving the problems of high temperature geotechnical engineering.
http://www.goldsci.ac.cn/article/2022/1005-2518/1005-2518-2022-30-5-764.shtml
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
陈宇龙,魏作安,许江,等,2011.单轴压缩条件下岩石声发射特性的实验研究[J].煤炭学报,36(2):237-240.
|
高军强,刘广建,杜时贵,等,2022.加锚异性结构面剪切破坏及声发射特征研究[J/OL].金属矿山:1-14[2022-11-21].
|
葛振龙,2019.高温后岩石声发射b值特征研究[D].北京:中国矿业大学.
|
葛振龙,孙强,王苗苗,等,2021.基于RA-AF的高温后砂岩破裂特征识别研究[J].煤田地质与勘探,49(2):176-183.
|
郝记,王飞,曹平,等,2021.遍布节理试样压剪加载下的力学特性及声发射特征研究[J].工程地质学报,29(5):1248-1256.
|
金嘉怡,朱泽威,陈忠清,等,2021.结构面剪切条件下岩石声发射特征研究[J].土工基础,35(5):621-634.
|
李浩然,王子恒,孟世荣,等,2021.高温三轴应力下大理岩损伤演化与声发射活动特征研究[J].岩土力学,42(10):2672-2682.
|
李西蒙,黄炳香,刘长友,等,2010.压剪破坏条件下型煤的声发射特征研究[J].湖南科技大学学报(自然科学版),25(1):22-26.
|
李先炜,兰勇瑞,邹俊兴,1983.岩石断口分析[J].中国矿业大学学 报,1(1):15-21.
|
李燕芳,2017.高温后花岗岩岩爆的声发射特征研究[D].南宁:广西大学.
|
李芷,贾长贵,杨春和,等,2015.页岩水力压裂水力裂缝与层理面扩展规律研究[J].岩石力学与工程学报,34(1):12-20.
|
梁忠豪,秦楠,孙嘉彬,等,2021.高温作用后黄砂岩三轴压缩及细观破裂机制[J].科学技术与工程,21(24):1671-1815.
|
刘建伟,2014.变角剪切下岩石的声发射—红外特性及损伤演化规律[D].赣州:江西理工大学.
|
罗丹旎,谢雨卿,苏国韶,等,2021.岩石—混凝土界面Ⅰ-Ⅱ型断裂及声发射特征[J].水力发电学报,40(7):118-130.
|
闵明,张强,蒋斌松,等,2020.实时高温下北山花岗岩劈裂试验及声发射特性[J].长江科学院院报,37(3):108-113.
|
秦本东,何军,谌伦建,2009.石灰岩和砂岩高温力学特性的试验研究[J].地质力学学报,15(3):254-261.
|
孙浩,苏楠,金爱兵,等,2022.温度对不同尺寸砂岩巴西劈裂特性影响[J].工程科学学报,44(1):26-38.
|
王亚超,窦斌,喻勇,等,2020.不同冷却方式下高温花岗岩巴西劈裂及声发射特性试验研究[J].地质科技通报,40(6):1-8.
|
吴刚,翟松韬,孙红,等,2014.高温下盐岩的声发射特性试验研究[J].岩石力学与工程学报,33(6):1203-1211.
|
吴刚,翟松韬,王宇,2015.高温下岗岩的细观结构与声发射特性研究[J].岩土力学,36(1):351-356.
|
吴顺川,郭沛,张诗淮,等,2018.基于巴西劈裂试验的花岗岩热损伤研究[J].岩石力学与工程学报,37(72):3806-3815.
|
吴阳春,郤保平,王磊,等,2020.高温后花岗岩的物理力学特性试验研究[J].中南大学学报(自然科学版),51(1):193-203.
|
武晋文,赵阳升,万志军,等,2009.中高温三轴应力下鲁灰花岗岩热破裂声发射特征的试验研究[J].岩土力学,30(11):3331-3336.
|
许江,吴慧,陆丽丰,等,2012.不同含水状态下砂岩剪切过程中声发射特性试验研究[J].岩石力学与工程学报,31(5):914-920.
|
徐小丽,高峰,2008.高温作用后花岗岩力学特性及声发射特性的试验研究[C]//江苏力学学术大会暨第四届苏港力学及其应用论坛论文集.苏州:江苏省力学学会.
|
杨圣奇,黄彦华,温森,2015.高温后非共面双裂隙红砂岩力学特性试验研究[J].岩石力学与工程学报,34(3):440-451.
|
尹彦波,李爱兵,袁节平,等,2005.岩石声发射特性试验研究[J].岩土力学,26(1):115-118.
|
曾晋,2018.温度—渗流—应力耦合作用下岩石损伤及声发射特征研究[J].水文地质工程地质,45(1):69-74.
|
翟松韬,吴刚,张渊,等,2013.高温作用下花岗岩的声发射特征研究[J].岩石力学与工程学报,32(1):126-134.
|
张军伟,2022.砂岩多步剪切力学及声发射特征研究[J].重庆建筑,(1):35-39.
|
郑达,巨能攀,2011.千枚岩岩石微观破裂机理与断裂特征研究[J].工程地质学报,19(3):317-322.
|
周逸飞,朱星,刘文德,2019.基于声发射和高斯混合模型的灰岩破裂特征识别研究[J].水利水电技术,50(11):131-140.
|
/
〈 |
|
〉 |