[an error occurred while processing this directive] [an error occurred while processing this directive]
[an error occurred while processing this directive]
明平田(1977-),男,陕西山阳人,正高级工程师,从事选矿工艺研究和生产管理等工作。ptming4500@sina.com |
收稿日期: 2021-11-09
修回日期: 2022-05-25
网络出版日期: 2022-10-31
基金资助
四川省区域创新合作项目“柴达木盆地大型金矿资源高效提质降杂新技术研究与示范”(22QYCX0061)
Study on Optimization of Flotation Time and Magnification Coefficient of a Refractory Gold Ore Concentrator
Received date: 2021-11-09
Revised date: 2022-05-25
Online published: 2022-10-31
浮选时间是选厂设计的重要参数之一,而浮选时间的确定与实验室小型试验的浮选时间和放大系数有关。针对难选金矿浮选时间的选定问题,在某选厂原设计(1 500 t/d)的基础上,重新进行了选厂设计以及实际浮选时间和放大系数的计算,验证选厂浮选时间的放大系数。随着矿石性质的变化,在该选厂开展了浮选工艺优化试验,将试验成果应用于选厂生产中,并在磨矿细度和浮选条件相同的情况下,开展了不同矿石处理量工业试验,确定了选厂最佳矿石处理量,计算了优化后的浮选时间和放大系数。结果表明:小型试验浮选时间为21 min,选厂实际浮选时间为84.08 min,实际放大系数为4.00;相比优化前,在原矿金品位降低0.47 g/t的情况下,选厂矿石处理量增加了204 t/d,金精矿富集比降低了0.11,金回收率提高了3.22%。研究结果可为同类型矿石性质选厂的浮选工艺设计提供参考。
明平田 , 李飞 , 熊召华 , 陈自强 , 马生萍 . 某难选金矿选厂浮选时间和放大系数的优化研究[J]. 黄金科学技术, 2022 , 30(4) : 623 -631 . DOI: 10.11872/j.issn.1005-2518.2022.04.165
Flotation time is one of the important parameters in the design of concentrator.The length of flotation time has great influence on the recovery and utilization of mineral resources and the operation effect of the concentrator.The determination of flotation time is related to the flotation time and magnification factor of small laboratory tests.In view of the selection of flotation time for refractory gold ores and the verification of the amplification factor of the flotation time of the concentrator,the concentrator was designed on the basis of the design of a 1 500 t/d concentrator,and the actual flotation time and amplification factor were calculated.The flotation time of the pilot scale test was 31 min.The designed flotation time is 54 min,and the average amplification coefficient is 1.74(roughing K value is 1.5,cleaning K value is 2.50 to 2.67).The actual flotation time of the concentrator is 68.99 min,and the actual amplification coefficient is 2.23(the actual rough scavenging K value is 1.86 to 2.41,and the actual cleaning K value is 1.88 to 3.45).With the change of ore properties,the pilot scale test of flotation process optimization was carried out for the gold mine according to the change of ore properties.Compared with the flotation test in the design,the flotation concentration is increased from 25% to 28%,the -74 μm content of grinding classification product is reduced from 75% to 71%,and the collector butyl xanthate was replaced with iso-amyl xanthate.The amount of sodium carbonate in rough scavenging process increases by 500 g/t,the amount of copper sulfate decreases by 200 g/t,no more copper sulfate and sodium carbonate was added in scavenging,and the flotation time is reduced from 31 min to 21 min.On this basis,the mineral processing tests with the same grinding fineness,flotation concentration and system conditions were conducted in the mill.The best ore dressing plant capacity of 1 704 t/d was determined.Combined with the survey of flotation process,according to the laboratory flotation test,the time of flotation,the flotation machine volume of each activity and the concentration of flotation were determined.The flotation time and K value of each flotation operation in the concentrator were calculated.The total flotation time of the concentrator reaches 84.08 min,and the K value of the flotation time is 4.00.The K value of rough sweep selection is 3.96 to 4.21 with an average of 4.10,and the K value of clean selection is 3.66 to 4.00 with an average of 3.81.After optimization,ore processing capacity increase by 204 t/d,gold concentrate concentration ratio decrease by 0.11 and gold recovery rate increase by 3.22% when the gold grade of raw ore decrease by 0.47 g/t.The research provides reference for the design of concentrator of the same type ore.
地质调查勘查技术标准体系进一步完善
“地质调查标准化与标准制修订(2019—2021)(物化探所)”项目成果通过评审,并获评优秀级。该项目由中国地质调查局地球物理地球化学勘查研究所承担。
该项目围绕自然资源勘查、深空与深地探测、国土空间规划等对地质勘查技术标准的需求,组织开展了勘查技术标准制修订工作,报批了多项勘查技术国家标准、行业标准和自然资源部中国地质调查局局标,进一步完善了多门类标准融合的地质调查勘查技术标准体系。通过3年的努力,项目全面完成了各项目标任务,实现了预期成果,获得了专家组的高度认可。
项目完成了8项标准的研制与修订,提升了勘查技术对地质调查工作的支撑能力。首次研制了《沿海滩涂区地球物理勘查技术要求》《干热岩测井规范》《天然富硒土地划定与标识》《非煤固体矿产勘查钻孔质量要求》4项技术标准,修订了《地球物理勘查技术符号》《地球化学勘查技术符号》2项国家标准和《地球物理勘查图图式图例及用色标准》《地热钻探技术规程》2项行业标准,推动了现代地质勘查技术的发展,为滩涂区资源调查、清洁能源勘查、富硒资源认定等工作提供了标准保障。
项目成果为TC93SC3勘查技术国标和行标的审查与报批工作提供了有力支撑。组织报批了38项勘查技术标准,其中36项获批发布,有力服务地质调查转型升级,同时为全国自然资源与国土空间规划标准化委员会建设与运行提供技术保障。
构建了新时代地球物理地球化学勘查和钻探工程标准子体系。建立了地球物理勘查、地球化学勘查、钻探工程3个专业标准子体系。新增了滩涂区调查、地下水污染调查、清洁能源调查、地壳深部探测科学钻探等地球物理勘查和钻探技术标准;完善了土地质量评价与监测、土地有益元素地球化学调查与评价、生态地球化学监测与预警等标准;拓宽了勘查技术标准体系的覆盖范围。
培育了勘查技术标准专业团队。通过项目实施,形成了地球物理勘查、地球化学勘查、钻探工程3支稳定的专业标准团队,一批勘查技术标准编制专业技术人员成为了标准化工作骨干力量,为自然资源标准工作持续发展提供了人才和团队保障。
(来源:中国矿业报)
http://www.goldsci.ac.cn/article/2022/1005-2518/1005-2518-2022-30-4-623.shtml
|
|
|
Editorial Board of Mineral Processing Design Manual,1988.Mineral Processing Design Manual[M].Beijing:Metallurgical Industry Press.
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
陈名洁,尤腾胜,孙明俊,等,2018.国内外常用浮选机综述及其设计选型中应注意的问题[J].中国矿山工程,47(2):31-35.
|
陈晓东,2021.精锐微泡浮选机强化微细粒浮选的机理与实践[J].有色金属(选矿部分),(1):112-116.
|
邓圣为,祁忠旭,2019.选矿小型试验成果工业化过程遇到的问题探讨[J].矿业研究与开发,39(3):72-74.
|
饭岛一,刘宗炎,1990.关于浮选时间放大比例系数的研究[J].国外金属矿选矿,(5):19-22.
|
李红,2011.选矿设备(浮选机)选择计算[J].新疆有色金属,(5):42-45.
|
李垒,刘志红,2014.超声处理时间对煤泥浮选降灰的影响[J].山东工业技术,(4):15,42.
|
刘建忠,2009.有关铜镍矿铜镍混合浮选时间的试验研究[J].新疆有色金属,(1):60-64.
|
刘守信,黄健芬,师伟红,2010.云南某金矿选矿试验研究[J].矿冶,(1):33-35.
|
秦伍,李同其,王念峰,等,2018.提高锂云母精矿品位及回收率的浮选工艺研究[J].佛山陶瓷,(8):27-31.
|
史帅星,张跃军,韩登峰,等,2013.浅析我国大型浮选机工业选型中几个问题[J].有色金属(选矿部分),(增):199-201.
|
唐义胜,2020.某复杂铅锌锡多金属选矿工艺试验研究[J].矿冶工程,40(3):68-71.
|
田祎兰,2015.云南某金矿选矿试验研究[J].矿冶,24(2):15-18.
|
《选矿设计手册》编委会,1988.选矿设计手册[M].北京:冶金工业出版社.
|
杨波,童雄,谢贤,等,2020.选冶联合提高甘肃某难浸金矿浮选尾矿金回收率的试验研究[J].黄金科学技术,28(2):285-292.
|
杨俊龙,郭艳华,郭海宁,等,2020.碳酸盐型难选金矿石选矿工艺流程试验研究[J].有色金属(选矿部分),(1):42-47.
|
殷璐,金哲男,杨红英,等,2018.我国黄金资源综合利用现状与展望[J].黄金科学技术,26(1):17-24.
|
余厚福,申滔,刘倩,2020.提高浮选柱作业回收率选矿实践[J].矿业工程研究,35(1):69-73.
|
袁琳阳,卢世杰,朱圣林,等,2020.浮选机内矿浆停留时间分布研究[J].有色金属(选矿部分),(4):100-104.
|
张丽霞,2002.利用连续生物浸出和硫脲浸出提高难处理浮选金精矿的金回收率[J].湿法冶金,21(3):142.
|
赵铁林,2018.南芬选矿厂处理北山采区矿石选矿工艺流程改造[J].金属矿山,(2):103-106.
|
周建月,2018.录斗艘金锑矿浮选工艺研究与生产实践[J].湖南有色金属,34(1):20-25.
|
/
〈 |
|
〉 |