[an error occurred while processing this directive] [an error occurred while processing this directive] [an error occurred while processing this directive]
[an error occurred while processing this directive]
采选技术与矿山管理

基于RCR _YOLOv4的矿井巷道红外障碍检测研究

  • 阮顺领 , 1, 2 ,
  • 董莉娟 , 1 ,
  • 卢才武 1, 2 ,
  • 顾清华 1, 2
展开
  • 1. 西安建筑科技大学资源工程学院,陕西 西安 710055
  • 2. 西安市智慧工业感知计算与决策重点实验室,陕西 西安 710055
董莉娟(1998-),女,陕西宝鸡人,硕士研究生,从事智慧矿山图像处理研究工作。

阮顺领(1981-),男,河南周口人,博士研究生,副教授,从事矿山智能科学与工程研究工作。

收稿日期: 2022-01-05

  修回日期: 2022-05-09

  网络出版日期: 2022-10-31

基金资助

国家自然科学基金项目“金属露天矿无人驾驶多工序多目标协同智能调度方法研究”(52074205)

Research on Infrared Obstacle Detection of Mine Roadway Based on RCR_YOLOv4

  • Shunling RUAN , 1, 2 ,
  • Lijuan DONG , 1 ,
  • Caiwu LU 1, 2 ,
  • Qinghua GU 1, 2
Expand
  • 1. School of Resource Engineering, Xi’an University of Architecture and Technology, Xi’an 710055, Shaanxi, China
  • 2. Xi’an Key Laboratory of Intelligent Industry Perception Computing and Decision Making, Xi’an 710055, Shaanxi, China

Received date: 2022-01-05

  Revised date: 2022-05-09

  Online published: 2022-10-31

本文亮点

针对地下矿井巷道光线昏暗的道路上会出现落石或行人等行车障碍物,严重影响无人驾驶矿卡安全行驶的问题,提出了一种基于红外视觉识别的巷道障碍物快速检测优化模型RCR_YOLOv4。该模型利用K-Means++优化算法筛选巷道障碍物的先验框尺寸,并引入深度可分离卷积降低网络参数量和计算量,从而提高障碍目标的定位精度和检测效率。通过设计双通道注意力机制对网络特征融合模块进行优化,实现对无人矿卡行车障碍的高精度检测。结果表明,该目标检测模型对矿井道路障碍的检测准确率达到93.52%,检测速度达到60.6 FPS,能够为矿井巷道复杂环境下无人矿卡安全行驶提供保障。

本文引用格式

阮顺领 , 董莉娟 , 卢才武 , 顾清华 . 基于RCR _YOLOv4的矿井巷道红外障碍检测研究[J]. 黄金科学技术, 2022 , 30(4) : 603 -611 . DOI: 10.11872/j.issn.1005-2518.2022.04.013

Highlights

Aiming at the problem that driving obstacles such as falling rocks or pedestrians may appear on the dim road of underground mine roadway,which seriously affects the safe driving of unmanned mine card,a fast detection optimization model RCR_YOLOv4 of roadway obstacles based on infrared vision recognition was proposed.Firstly,the infrared camera was used for data acquisition,random cutting,random flipping,mirror flipping and other methods were used to expand the experimental data set.Labeling software was used for data Labeling,and the infrared obstacle data set of mine roadway was built and loaded into the obstacle detection model.Secondly,K-Means ++ optimization algorithm was used to screen the prior frame size of obstacles in the roadway,and depth separable convolution was introduced to reduce the number of network parameters and computation,so as to improve the positioning accuracy and detection efficiency of obstacle targets.The dual-channel attention mechanism is designed to optimize the network feature fusion module to realize the high-precision detection of the obstacle of unmanned mine jamming.The results show that the detection accuracy of the model can reach 93.52% and the detection speed can reach 60.6 FPS.Compared with the current popular target detection networks such as Faster_RCNN,SSD and YOLOv4,RCR_YOLOv4 also shows better comprehensive performance and can provide guarantee for the safe driving of unmanned mine cards in the complex environment of mine roadway.

[an error occurred while processing this directive]

USGS联合NASA开展关键矿产填图

据Mining.com网站报道,美国地质调查局(USGS)和美国国家航空和航天局(NASA)正联合对加利福尼亚、科罗拉多、内华达、亚利桑那、新墨西哥和犹他州的部分地区进行关键矿产潜力填图。

美国政府投资的这个项目为期5年、总额1 600万美元,将采用NASA的机载可见/红外成像光谱仪高空地球遥感平台,以及中分辨率成像光谱仪/高级星载热发射和反射辐射仪(MODIS/ASTER)机载模拟器,来收集美国西部广大干旱半干旱地区的高光谱数据。

高光谱数据是地表反射光通过数百个频带测量的结果。其测量范围不仅包括肉眼可见光,也包括不可见光一直到红外光线。

USGS和NASA称,收集的数据有助于研究地表岩石形成,因为岩石中的每种矿物在不同光线照射下都有其独特的反射性质。因此,研究这些模式或“光谱特征”(Spectral Signatures)能够帮助寻找成矿潜力大的地区。

此项研究还包括评价矿渣中的关键矿产潜力。“矿渣中的关键矿产资源潜力愈来愈受到重视,特别是那些经常作为副产品的矿产,这也为污染地区修复提供了机遇”,该机构在媒体发布会上称。

“例如,USGS最近在研究纽约州阿迪朗达克山区老矿山矿渣中的稀土元素潜力。”

过去,USGS还利用高光谱数据来分析阿拉斯加州的成矿潜力,同时也发现这些数据对于研究其他一系列地学和生态问题也有帮助,包括矿井排出的酸性水、泥石流、农业、野火和生物多样性等。

“拜登总统的两党基础设施法案投资使得这项令人兴奋的项目成为可能,从而使得NASA和USGS发挥各自优势迈向共同目标”,美国地质调查局长大卫·阿普莱盖特(David Applegate)在媒体发布会上称。

“我们正在收集的数据不仅是关键矿产研究的基础,也是从自然灾害预防到生态恢复等其他诸多科学应用的基础。”

给该项目配置的1 600万美元资金是两党基础设施法案拨付给美国地质调查局5.107亿美元预算的一部分,后者主要用于矿产资源填图和数据综合解释、地球矿产资源计划中(Earth MRI)地化样品分析数据存储以及科罗拉多州戈尔登能源和矿产资源研究中心建设。

(来源:全球地质矿产信息系统)

脚注

http://www.goldsci.ac.cn/article/2022/1005-2518/1005-2518-2022-30-4-603.shtml

Arthur D Vassilvitskii S2006.K-means++:The Advantages of Careful Seeding[M]. Palo Alto:Stanford InfoLab Publication.

Bi Lin Xie Wei Cui Jun2017.Identification research on the miner’s safety helmet wear based on convolutional neural network[J].Gold Science and Technology25(4):73-80.

Bochkovskiy A Wang C Y Liao H Y M2020.Yolov4:Optimal speed and accuracy of object detection[J].arXiv,2004.10934.

Cao M C Wang J M2020.Obstacle detection for autonomous driving vehicles with multi-lidar sensor fusion[J].Journal of Dynamic Systems Measurement and Control142(2):021007.DOI:10.1115/1.4045361 .

Chen Yi Zhang Shuai Wang Guiping2020.Vehicle detection algorithm based on information fusion of LIDAR and camera[J].Machinery & Electronics38(1):52-56.

Cui Tiejun Wang Lingxiao2021.Research on application of YOLOv4 object detection algorithm in monitoring on masks wearing of coal miners[J].Journal of Safety and Technology17(10):66-71.

He K Gkioxari G Dollár P,et al,2017.Mask r-cnn[C]//IEEE International Conference on Computer Vision(ICCV) .Venice:IEEE: 2961-2969.

He K Zhang X Ren S,et al,2016.Deep residual learning for image recognition[C]//IEEE Conference on Computer Vision and Pattern Recognition(CVPR).Las Vegas:IEEE: 770-778.

Howard A G Zhu M Chen B,et al,2017.Mobilenets:Efficient convolutional neural networks for mobile vision applications[J].arXiv,1704.04861.

Li T P Xu W H Wang W,et al,2020.Obstacle detection in a field environment based on a convolutional neural network security[J].Enterprise Information Systems16(3):472-493.

Liu W Anguelov D Erhan D,et al,2016.Ssd:Single shot multibox detector[C]//European Conference on Computer Vision(ECCV).Amsterdam:IEEE: 21-37.

Lu Caiwu Qi Fan Ruan Shunling2020.An open-pit mine roadway obstacle warning method intergrating the object detection and distance threshold model[J].Opto-Electronic Engineering47(1):40-47.

Niu Lixia Li Xiaomeng2021.A new safety management model of intelligent mines in 5G era[J].China Safety Science Journal31(6):29-36.

Ren S Q He K M Girshick R,et al,2017.Faster r-cnn:Towards real-time object detection with region proposal networks[J].IEEE Transactions on Pattern Analysis & Machine Intelligence39(6):1137-1149.

Ruan Shunling Li Shaobo Lu Caiwu,et al,2021.Road negative obstacle detection in open-pit mines based on multi scale feature fusion[J].Journal of China Coal Society46(Supp.2):1-10.

Wang Jinghua Wang Liguan Bi Lin2021.Obstacle detection technology of mine electric locomotive driverless based on computer vision technology[J].Gold Science and Technology29(1):136-146.

Woo S Park J Lee J Y,et al,2018.Cbam:Convolutional block attention module[C]//European Conference on Computer Vision(ECCV).Munich:IEEE: 3-19.

Zhang X Y Zhou M Qiu P,et al,2019.Radar and vision fusion for the real-time obstacle detection and identification[J].Industrial Robot46(3):391-395.

Zhao Liang Hu Jie Llu Han,et al,2021.Semantic segmentation based deep learning algorithm for 3D object detection from point clouds[J].Cinese Journal of Lasers48(17):1-22.

Zhong Y Wang J Peng J,et al,2020.Anchor box optimization for object detection[C]//IEEE/CVF Winter Conference on Applications of Computer Vision(WACV).Snowmass:IEEE: 1286-1294.

毕林,谢伟,崔君,2017.基于卷积神经网络的矿工安全帽佩戴识别研究[J].黄金科学技术25(4):73-80.

陈毅,张帅,汪贵平,2020.基于激光雷达和摄像头信息融合的车辆检测算法[J].机械与电子38(1):52-56.

崔铁军,王凌霄,2021.YOLOv4目标检测算法在煤矿工人口罩佩戴监测工作中的应用研究[J].中国安全生产科学技术17(10):66-71.

卢才武,齐凡,阮顺领,2020.融合目标检测与距离阈值模型的露天矿行车障碍预警[J].光电工程47(1):40-47.

牛莉霞,李肖萌,2021.5G时代智慧矿山安全管理新模式[J].中国安全科学学报31(6):29-36.

阮顺领,李少博,卢才武,等,2021.多尺度特征融合的露天矿区道路负障碍检测[J].煤炭学报46(增2):1-10.

王京华,王李管,毕林,2021.基于计算机视觉技术的矿井电机车无人驾驶障碍物检测技术[J].黄金科学技术29(1):136-146.

赵亮,胡杰,刘汉,等,2021.基于语义分割的深度学习激光点云3D目标检测算法[J].中国激光48(17):1-22.

文章导航

/

[an error occurred while processing this directive]