[an error occurred while processing this directive] [an error occurred while processing this directive] [an error occurred while processing this directive]
[an error occurred while processing this directive]
采选技术与矿山管理

开挖卸荷扰动下的深部巷道支护及其效果评价

  • 陈立强 ,
  • 赵国彦 ,
  • 李洋 ,
  • 毛文杰 ,
  • 党成凯 ,
  • 方博扬
展开
  • 中南大学资源与安全工程学院,湖南 长沙 410083
赵国彦(1963-),男,湖南沅江人,教授,博士生导师,从事采矿、安全与岩石力学研究工作。

陈立强(1996-),男,湖北十堰人,硕士研究生,从事地压智能监测及灾害控制研究工作。

收稿日期: 2021-09-16

  修回日期: 2021-12-30

  网络出版日期: 2022-09-14

基金资助

“十三五”国家重点研发计划课题“深部金属矿绿色开采关键技术研发与示范”(2018YFC0604606)

Deep Roadway Support and Its Effect Evaluation Under Excavation Unloading Disturbance

  • Liqiang CHEN ,
  • Guoyan ZHAO ,
  • Yang LI ,
  • Wenjie MAO ,
  • Chengkai DANG ,
  • Boyang FANG
Expand
  • School of Resources and Safety Engineering,Central South University,Changsha 410083,Hunan,China

Received date: 2021-09-16

  Revised date: 2021-12-30

  Online published: 2022-09-14

本文亮点

为了解决某金矿深部巷道存在的围岩灾变损伤严重、支护结构濒临失效的问题,开展了有关深部巷道开挖卸荷和采动影响耦合作用下的开挖损伤研究,并针对性地提出围岩变形控制方案。运用FLAC3D软件从应力集中—迁移演化、位移场和塑性区分布3个方面对该支护方案的支护效果进行深入探讨,并结合现场工程试验监测所获得的实时原位数据进行分析对比。研究结果表明:深部破碎化巷道在开挖扰动下塑性区扩展趋势明显,两帮肩部及侧墙底角处应力集中程度较高,底板所受破裂损伤压力最大,高应力向巷道深部迁移,最终巷道开挖影响区停留在半径的2~4倍。同时,验证了针对这种工程环境所施加的喷—锚—网联合支护替代传统的U型钢架、锚杆支护做补强支护这一围岩控制方案能够更好地发挥破碎化围岩的自承载能力,有效抵御巷道的变形破坏,具有良好的支护效果,能够为类似工程环境的矿山深部巷道围岩变形控制和支护设计提供合理化建议。

本文引用格式

陈立强 , 赵国彦 , 李洋 , 毛文杰 , 党成凯 , 方博扬 . 开挖卸荷扰动下的深部巷道支护及其效果评价[J]. 黄金科学技术, 2022 , 30(3) : 438 -448 . DOI: 10.11872/j.issn.1005-2518.2022.03.128

Highlights

Roadway support work is very important to ensure the safety and sustainable development of enterprise production,reasonable support can not only ensure the stability of the roadway to the greatest extent,but also greatly save the cost of support.Especially in recent years,with the increase of mining depth,there is a high stress environment caused by excavation unloading and mining impact the deep roadway,which greatly increases the probability of safety hazards such as roof caving,gangstay or even collapse,so it is more necessary to optimize governance and time-effective support.In order to solve the serious catastrophic damage of the surrounding rock and the near failure of the supporting structure in the deep roadway of a gold mine, the excavation damage of deep roadway under the coupling effect of excavation and mining unloading was studied,and the deformation control scheme of surrounding rock was proposed.FLAC3D was used to conduct an in-depth discussion on the support effect of the supporting scheme from three aspects of stress concentration-migration evolution,displacement field and plastic zone distribution characteristics,and the real-time in-situ data obtained from field engineering experiment monitoring were analyzed and compared.The results show that under the disturbance of excavation in the deep fractured roadway,the plastic zone is obviously expanded,the stress con-centration degree at both shoulders and the bottom corner of the side wall is high,the fracture damage pressure on the floor is the largest,and the high stress migrates to the deep part of the roadway.Finally,the influence of roadway excavation stays at about 2~4 times the radius.At the same time,according to the measured data,the stress of the surrounding rock of the roadway increases continuously during the unloading disturbance process of the roadway excavation,which indicates that the excavation disturbance in the adjacent stope will have a grea-ter impact on the stability of the roadway.Before and after the support is applied,the average growth rate of the roadway surrounding rock stress decreases from 0.096 to 0.008.At this time,as the amount of ore continues to increase,the stress in the surrounding rock remains relatively stable.It is verified that the surrounding rock control scheme of shotcrete-anchor-net combined support instead of the traditional U-shaped steel frame and bolt support as reinforcement support for this engineering environment can better play the fragmented surrounding rock.The self-bearing capacity of the roadway effectively resists the deformation and damage of the roadway,and has a very good supporting effect.It can provide reasonable suggestions for the design of surrounding rock deformation and support for deep mine roadways with similar engineering environments.

[an error occurred while processing this directive]

上半年我国生产黄金174.69 t,同比增长14.36

7月27日,中国黄金协会公布的最新统计数据显示,2022年上半年,国内原料黄金产量为174.687 t,比2021年上半年增产21.934 t,同比上升14.36%。其中,黄金矿产金完成139.154 t,有色副产金完成35.533 t。另外,2022年上半年进口原料产金55.658 t,同比上升6.65%,若加上这部分进口原料产金,全国共生产黄金230.345 t,同比上升12.4%。

2022年上半年,我国产金大省——山东省黄金生产企业复产复工效果显著,矿产金产量大幅回升123.64%。黄金主产区生产的恢复,带动全国黄金产量的大幅上涨。2022年上半年,大型黄金企业(集团)境内矿山矿产金产量73.546 t,占全国的比重为52.85%,较2021年同期增加3.54个百分点。大型黄金企业(集团)继续拓展海外业务,海外项目黄金产量显著提升。2022年上半年,紫金矿业、山东黄金和赤峰黄金等企业境外矿山矿产金产量共计23.864 t,同比增长48.42%。

2022年上半年,全国黄金消费量476.82 t,与2021年同期相比下降12.84%。其中,黄金首饰320.73 t,同比下降7.98%;金条及金币112.44 t,同比下降25.59%;工业及其他用金43.65 t,同比下降7.89%。

上半年,黄金首饰消费量出现明显下滑;国际环境复杂演变、金价大幅波动继续支撑黄金投资需求,部分大型黄金零售商和商业银行金条及金币销量仍保持增长,而标准小金条出库量的下降,拉低了金条及金币整体销量,但二季度降幅已明显收窄。6月份黄金消费呈现快速恢复势头,黄金消费有望保持持续恢复趋势。

2022年上半年,黄金现货成交量企稳回升,期货交易量受其他大宗商品板块资金分流影响有所回落。

上海黄金交易所全部黄金品种累计成交量双边1.93万t(单边0.96万t),同比上升4.54%,成交额双边7.56万亿元(单边3.78万亿元),同比上升8.59%;上海期货交易所全部黄金品种累计成交量双边4.44万t(单边2.22万t),同比下降12.26%,成交额双边15.96万亿元(单边7.98万亿元),同比下降10.77%。上半年,国内黄金ETF持仓规模下降,共减持18.26 t,截至6月末,国内黄金ETF持有量约57.02 t。2022年上半年,在地缘政治紧张局势升级、新冠病毒变异毒株在全球广泛传播的影响下,黄金避险保值功能凸显,金价震荡飙升,一度逼近历史最高水平;其后美联储加息、美元升值引发了市场上部分黄金持有者获利回吐,黄金价格从高位回撤,但在地缘政治危机、全球疫情持续、世界经济放缓、通货膨胀加剧等因素支撑下,金价仍处于历史较高水平。6月底,伦敦现货黄金定盘价为1817.00美元/盎司,较年初上涨0.31%,基本持平。上海黄金交易所Au9999黄金以373.00元/克开盘,6月底收于391.70元/克,较年初上涨5.01%,上半年加权平均价格为389.58元/克,较上一年同期上涨3.44%。

脚注

中国黄金网

http://www.goldsci.ac.cn/article/2022/1005-2518/1005-2518-2022-30-3-438.shtml

An Y P Zhang N Zhao Y M,et al,2021.Field and numerical investigation on roof failure and fracture control of thick coal seam roadway[J].Engineering Failure Analysis,128:105 594.

Fan Lei Wang Weijun Yuan Chao2020.Evaluation method for supporting effect of inclined soft rock roadway based on extenics[J].Journal of Mining and Safety Engineering37(3):498-504.

Guo Ping Shen Dafu2021.Optimization design and numerical simulation of supporting scheme for deep mine roadway [J].Mining Safety and Environmental Protection48(4):87-91.

He Manchao1993. Introduction to Soft Rock Roadway Engineering[M].Beijing:China University of Mining and Technology Press.

He Manchao Sun Xiaoming2002.Soft Rock Engineering Mechanics[M]. Beijing:Science Press.

Hui Qiang Zhang Jun Jiang Haibo2021.Study on the characteristics and distribution laws of plastic zone induced by deep-buried high-geostress hydraulic tunnelling in jointed rock mass[J].Modern Tunnelling Technology58(4):86-94.

Kang Hongpu Fan Mingjian Gao Fuqiang,et al,2015.Deformation and support of rock roadway at depth more than 1000 meters[J]. Chinese Journal of Rock Mechanics and Engineering34(11):2227-2241.

Li G Ma F S Guo J,et al,2020.Study on deformation failure mechanism and support technology of deep soft rock roadway[J].Engineering Geology,264:105262.

Li Guang Ma Fengshan Guo Jie,et al,2017. Application of steel tube confined concrete support in Jinchuan mine[J].Gold Science and Technology25(5):57-66.

Li Guang Ma Fengshan Liu Gang,et al,2018. Study on supporting parametric optimizing design and evaluate supporting effect of deep roadway in Jinchuan mine[J].Gold Science and Technology26(5):605-614.

Li Jing Hu Bin Liu Yanzhang,et al,2021.Improved catastrophe progression method for evaluating supporting effect of bolts in mining roadway[J].China Safety Science Journal31(3):60-65.

Li Qiyue Chen Liang Fan Zuopeng,et al,2013. ARMA model and its application in prediction of underground engineering supporting effect[J].Mining and Metallurgical Engineering33(3):8-12.

Liu Haiyan Zuo Jianping Liu Dejun,et al,2021. Optimization of roadway bolt support based on orthogonal matrix analysis[J].Journal of Mining and Safety Engineering38(1):84-93.

Ni Haiming2021.Application and safety evaluation of yielding support in deep high stress roadway[J].Coal and Chemical Industry44(1):17-20.

Pan Rui Wang Lei Cai Yi,et al,2021.Analysis of flat roof stability in deep roadway and its repair control[J]. Journal of Mining and Safety Engineering38(4):756-765.

Pu Chunyan Liu Bin Li Zhongnan,et al,2021.Analysis of stress evolution characteristics of deep roadway excavation[J].Metal Mine50(2):41-52.

Shen Yanmei Wei Sijiang2011.Fuzzy comprehensive evaluation of bolt support effects in deep-mining gateway[J].Journal of Mining and Safety Engineering28(4):576-580.

Song Tao2019.Study on Support Design and Effect Evaluation of S1201 Mining Roadway in Ningtiaota Coal Mine[D].Xi’an:Xi’an University of Science and Technology.

Sun Qihao Ma Fengshan Wan Yang,et al,2021.Numerical simulations of excavation damage in deep roadways of Jinchuan mining area[J].Journal of Engineering Geology29(4):1017-1027.

Tang B Mathias Y Cheng H,et al,2021.Numerical study and field performance of rockbolt support schemes in TBM-excavated coal mine roadways:A case study[J].Tunnelling and Underground Space Technology,115:104053.

Wan Chuanchuan Li Xibing Ma Chunde2012.Optimization of support technology for deep soft rock roadway based on field measurement of excavation damage[J]. Mining and Metallurgical Engineering32(1):12-16.

Wang G F Li G Dou L M,et al,2020.Applicability of energy-absorbing support system for rockburst prevention in underground roadways[J].International Journal of Rock Mechanics and Mining Sciences,132:104396.

Wang Weijun Han Sen Dong Enyuan2021. Boundary equation of plastic zone in roadway surrounding rocks considering supporting effect and its application[J].Journal of Mining and Safety Engineering38(4):749-755.

Wang Xinfeng He Yi Lu Mingyuan,et al,2021.Study on deformation and failure characteristics of deep roadway surrounding rock under excavation unloading disturbance[J].China Safety Science Journal31(8):83-90.

Xia Xicen2021.Inverse Analysis of Tunnel Surrounding Rock Based on DE-BP Neural Network and Research of Support Parameters[D].Dalian:Dalian University of Technology.

Xie Heping2019. Research review of the state key research development program of China:Deep rock mechanics and mining theory [J].Journal of China Coal Society44(5):1283-1305.

Yu K P Ren F Y Puscasu R,et al,2020.Optimization of combined support in soft-rock roadway[J].Tunnelling and Underground Space Technology,103:103502.

Zheng Keyue Shi Chenghua Lei Mingfeng,et al,2021.Stability analysis and support design optimization of large-deformation tunnels in structural fracture zones with high in-situ stresses considering loose effect[J].Chinese Journal of Ro-ck Mechanics and Engineering40(8):1603-1613.

范磊,王卫军,袁超,2020.基于可拓学倾斜软岩巷道支护效果评价方法[J].采矿与安全工程学报37(3):498-504.

郭平,沈大富,2021.深部巷道支护方案优化设计及数值模拟研究[J].矿业安全与环保48(4):87-91.

何满潮,1993.软岩巷道工程概论[M].北京:中国矿业大学出版社.

何满潮,孙晓明,2002.软岩工程力学[M].北京:科学出版社.

惠强,张军,姜海波,2021. 深埋高地应力水工隧洞节理岩体开挖塑性区特征及分布规律研究[J]. 现代隧道技术58(4):86-94.

康红普,范明建,高富强,等,2015.超千米深井巷道围岩变形特征与支护技术[J].岩石力学与工程学报34(11):2227-2241.

李光,马凤山,郭捷,等,2017.U钢管混凝土支架支护技术在金川矿山的应用[J].黄金科学技术25(5):57-66.

李光,马凤山,刘港,等,2018.金川矿区深部巷道支护效果评价及参数优化研究[J].黄金科学技术26(5):605-614.

李京,胡斌,刘艳章,等,2021.回采巷道锚杆支护效果评判的改进突变级数法[J].中国安全科学学报31(3):60-65.

李启月,陈亮,范作鹏,等,2013.地下工程支护效果的ARMA预测模型及应用[J].矿冶工程33(3):8-12.

刘海雁,左建平,刘德军,等,2021.基于正交矩阵分析的巷道锚杆支护优化[J].采矿与安全工程学报38(1):84-93.

倪海明,2021.深部高应力巷道让压支护的应用及安全评价[J].煤炭与化工44(1):17-20.

潘锐,王雷,蔡毅,等,2021.深部巷道平顶稳定性分析及返修控制研究[J].采矿与安全工程学报38(4):756-765.

蒲春艳,刘滨,李中楠,等,2021. 深部巷道开挖应力演化特征分析[J]. 金属矿山50(2):41-52.

申艳梅,韦四江,2011.回采巷道锚杆支护效果模糊综合评判[J].采矿与安全工程学报28(4):576-580.

宋涛,2019. 柠条塔煤矿S1201回采巷道支护设计及效果评价研究[D].西安:西安科技大学.

孙琪皓,马凤山,万洋,等,2021.金川矿区深部巷道开挖损伤数值模拟研究[J].工程地质学报29(4):1017-1027.

万串串,李夕兵,马春德,2012.基于围岩松动圈现场测试的深部软岩巷道支护技术优化[J].矿冶工程32(1):12-16.

王卫军,韩森,董恩远,2021.考虑支护作用的巷道围岩塑性区边界方程及应用[J].采矿与安全工程学报38(4):749-755.

王新丰,何毅,陆明远,等,2021.开挖卸荷扰动深部巷道围岩变形破坏特征研究[J].中国安全科学学报31(8):83-90.

夏溪岑,2021. 基于DE-BP神经网络的隧道围岩反演分析及支护参数研究[D].大连:大连理工大学.

谢和平,2019.深部岩体力学与开采理论研究进展[J].煤炭学报44(5):1283-1305.

郑可跃,施成华,雷明锋,等,2021.考虑松动效应的高地应力构造破碎带隧道稳定性分析及大变形支护设计优化[J].岩石力学与工程学报40(8):1603-1613.

文章导航

/

[an error occurred while processing this directive]