[an error occurred while processing this directive] [an error occurred while processing this directive] [an error occurred while processing this directive]
[an error occurred while processing this directive]
采选技术与矿山管理

基于RHT模型双孔同时爆破均质岩体损伤的数值模拟

  • 王卫华 ,
  • 刘洋 ,
  • 张理维 ,
  • 张恒根
展开
  • 中南大学资源与安全工程学院,长沙 410083
刘洋(1997-),男,湖南衡阳人,硕士研究生,从事安全工程与爆破等方面的研究工作。

王卫华(1976-),男,湖南长沙人,教授,从事岩体动力学、爆破及安全工程研究工作。

收稿日期: 2021-09-17

  修回日期: 2022-03-10

  网络出版日期: 2022-09-14

基金资助

国家自然科学基金项目“高应力硬岩硐室板裂致灾机制及其风险控制支护方法”(51874354)

Numerical Simulation of Homogeneous Rock Mass Damage Caused by Two-hole Simultaneous Blasting Based on RHT Model

  • Weihua WANG ,
  • Yang LIU ,
  • Liwei ZHANG ,
  • Henggen ZHANG
Expand
  • School of Resources and Safety Engineering,Central South University,Changsha 410083,Hunan,China

Received date: 2021-09-17

  Revised date: 2022-03-10

  Online published: 2022-09-14

本文亮点

为探究双孔爆破时炮孔间距和额外自由面对爆破过程中爆破损伤的影响,基于RHT(Riedel-Hiermaier-Thoma)损伤本构建立了多组三维数值模型,利用模型损伤云图研究不同爆破条件下的岩石爆破过程,通过自定义变量—有效损伤率的变化探究炮孔周围岩石损伤的时空演化过程。结果表明:随着炮孔间距的增加,岩石有效损伤率逐渐递减,相同截面处的有效损伤率在炮孔间距最小的方案中最大,相邻炮孔间的爆破能量叠加作用随炮孔间距的增大而减弱,合适的炮孔间距可以获得更加理想的爆破效果;岩石有效损伤率随着自由面到炮孔中心处距离的增大而逐渐减小,爆破能量倾向于向自由面方向传播,额外自由面对爆破能量分布的影响随自由面与炮孔间距的增大而减弱。数值模拟结果对研究双孔爆破能量的传递法则具有一定的借鉴意义。

本文引用格式

王卫华 , 刘洋 , 张理维 , 张恒根 . 基于RHT模型双孔同时爆破均质岩体损伤的数值模拟[J]. 黄金科学技术, 2022 , 30(3) : 414 -426 . DOI: 10.11872/j.issn.1005-2518.2022.03.130

Highlights

Due to the complex nature of rock mass and the different transfer modes of explosive energy,it is difficult to control the blasting process and blasting effect.After blasting,the damage of rock mass around blast holes is related to the bearing capacity and stability of the project.In order to explore the influence of blast hole spacing and additional free surface on the blasting process and effect during double-hole blasting,a double-hole blasting model was established based on RHT (Riedel Hiermaier Thoma) damage constitutive model by using LS-DYNA finite element software to simulate rock blasting damage under different working conditions.The experiment of previous scholars was repeated by numerical simulation,and the test results were compared with the numerical simulation results in this paper to verify the feasibility of the numerical simulation method and the rationality of the selection of material parameters.Through the comparative analysis between numerical simulation results and blasting experimental results,it is determined that the rock blasting damage threshold applicable to this paper is 0.5 based on the blasting mechanism,and the rock damage value greater than 0.5,which is called the effective damage of rock.The effective damage rate of rock is defined as the proportion of the effective damage range of rock in the plane damage cloud map to the total plane area.The change of effective damage rate of rock is used to intuitively show the temporal and spatial evolution law of rock damage in the blasting process.The rock damage nephograms at different times were intercepted to observe the damage in different directions of the rock after blasting.The damage nephograms were processed by LS-PrePost to obtain the distribution range of effective damage on the plane.Then,the MATLAB program was used to calculate the effective damage rate,and the numerical calculation and analysis were carried out.The results show that the effective damage rate of rock decreases with the increase of blast hole spacing,and the effective damage rate at the same section is the largest in the scheme with the smallest blast hole spacing.The superposition effect of blasting energy between adjacent blastholes decreases with the increase of blast hole spacing,and a more ideal blasting effect can be obtained with an appropriate blast hole spacing.The effective damage rate of rock decreases gradually with the increase of the distance between the free surface and the center of the blast hole,and the blasting energy tends to propagate to the free surface.The influence of additional free surface on the distribution of blasting energy decreases with the increase of the distance between the free surface and the blast hole.

[an error occurred while processing this directive]

国内首个基于WiFi6Mesh组网井下远程控制铲运机在焦家金矿成功试运行

2022年8月,山东黄金所属焦家金矿圆满完成基于WiFi6Mesh组网环境下的铲运机远程控制试验并成功试运行。据悉,这是国内首个基于WiFi6Mesh组网环境下,完成的井下大型铲运设备远程控制应用。

为加速推进“三化”建设,焦家金矿围绕智能装备应用井下作业充分调研了采场的作业环境和设备运行过程,将井下机械化采掘作业实操基地作为本次试验地点,联合华为、中国移动、莱州拓兴等单位,开展基于WiFi6Mesh组网环境下,无轨设备远程操控试验。

期间克服了井下矿脉资源窄,矿房较小且分散、转场频繁、开采过程和持续伴随爆破作业等原因,造成的网络和基站安装维护工作难度大,过程成本高等难题。

部署华为WiFi6基站、天线、AC控制器和交换机等设备,调试搭建无线Mesh组网环境并对原有远程操控的3立方铲运机,进行通信设备、车载控制程序和远程操控台程序升级改造,在顺利完成各种场景测试后圆满完成了在焦家金矿寺庄分矿地表调度中心的远程控制。

据了解,WiFi6除了具备5G的高速率低延时特性之外,还可以进行Mesh无线桥接组网,简化了矿房转场过程中,无线基站的安装和维护工作,提高了工作效率,同时还降低了过程成本,在WiFi6产品上,增加的双发选收的新技术,解决了无线漫游丢包的问题,保障了设备运行的安全。

下一步,山东黄金将持续研究推进“5G+智能采矿”“5G+智能辅助运输”等技术项目,打造“机械化换人、自动化减人、信息化管人、智能化无人”矿山生产运营新模式,进一步提升开采效率与安全生产水平。

脚注

山东黄金集团有限公司

http://www.goldsci.ac.cn/article/2022/1005-2518/1005-2518-2022-30-3-414.shtml

Bai Yu Zhu Wancheng Wei Chenhui,et al,2013.Numerical simulation of double hole blasting under different in-situ stress conditions [J] .Geotechnical mechanics14(Supp.1):466-471.

Banadaki M M D2010.Stress-Wave Induced Fracture in Rock Due to Explosion Action[D].Toronto:University of Toronto.

Borrvall T Riedel W2009.The RHT concrete model in LS-DYNA[C]// Proceedings of the 8th European LS-DYNA Users Conference. California: Livermore Software Technology Corporation.

Cui Zhengrong Wang Yu Yi Haibao,et al,2019.Numerical simulation and experimental study on rock mass damage caused by double hole blasting under deep high ground stress[J].Blasting36(2):59-64.

Hu Yingguo Lu Wenbo Chen Ming,et al,2012.Comparison and improvement of rock blasting damage models[J].Geotechnical Mechanics33(11):3278-3284.

Huang Youpeng Wang Zhiliang Bi Chengcheng2018.Simulation analysis of blasting damage range and damage distribution characteristics of rock[J].Hydro-Science and Engine-ering,(5):95-102.

Jayasinghe L B Shang J Zhao Z,et al,2019.Numerical investigation into the blasting -induced damage characteristics of rocks considering the role of in-situ stresses and discontinuity persistence[J].Computers and Geotechnics,116:103207.

Liu K Li Q Y Wu C Q,et al,2018.A study of cut blasting for one-step raise excavation based on numerical simulation and field blast tests[J] .International Journal of Rock Mechanics and Mining Sciences,109:91-104.

Liu Liang Lu Wenbo Chen Ming,et al,2016.Statistical study on damage threshold of rock mass in critical fracture state under drilling and blasting excavation[J].Chinese Journal of Rock Mechanics and Engineering35(6):1133-1140.

LSTC,2006.LS-DYNA Theory Manual[M].California:Livermore Software Technology Corporation.

Shen S W Zhao Y Liu C,et al,2021.Penetration form of inter-hole cracks under double-hole blasting conditions with inclined fissures[J].Advances in Civil Engineering

Shen Shiwei Li Guoliang Li Dong,et al,2019.Crack propagation law of double hole blasting under different angle prefabricated cracks[J].Acta Coal Sinica12(10):3049-3057.

Sun Conghuang Qu Yandong Kong Xiangqing,et al,2017.Numerical simulation of double hole blasting effect in rock media[J].Blasting4(3):37-45,130.

Wu B Xu S X Meng G W,et al,2021.Study on the dynamic evolution of through-crack in the double hole of elliptical bipolar linear-shaped charge blasting[J].Shock and Vibration

Xia Xiang Li Junru Li Haibo,et al,2007.Damage characteristics of blasting excavation rock mass in Ling’ao nuclear power station,Guangdong[J].Chinese Journal of Rock Mechanics and Engineering,2007,26(12):2510-2516.

Xie L X Lu W B Zhang Q B,et al,2017.Analysis of damage mechanisms and optimization of cut blasting design under high in-situ stresses[J].Tunnelling and Underground Pace Technology,66:19-33.

Yang Jianhua Sun Wenbin Yao Chi,et al,2020.Rock breaking mechanism of porous blasting in high stress rock mass [J].Explosion and Impact40(7):118-127.

Yang Renshu Wang Yanbing Yue Zhongwen,et al,2013.Dynamic behavior of crack propagation in directional fracture double hole blasting[J].Explosion and Impact7(6):631-637.

Yi C Sjöberg J Johansson D2017.Numerical modelling for blast-induced fragmentation in sublevel caving mines[J] .Tunnelling and Underground Space Technology,68:167-173.

Yue Zhongwen Guo Yang Yang Xu2015.Experimental study on crack propagation behavior of slotted hole under blast loading[J].Journal of Rock Mechanics and Engineering34 (10):2018-2026.

Zhang X L Jiao Y Y Ma J F2018.Simulation of rock dynamic failure using discontinuous numerical approach [J].Computers and Geotechnics,96:160-166.

Zhao J J Zhang Y Ranjith P G2017.Numerical simulation of blasting-induced fracture expansion in coal masses [J].International Journal of Rock Mechanics and Mining Sciences,100:28-39.

白羽,朱万成,魏晨慧,等,2013.不同地应力条件下双孔爆破的数值模拟[J] .岩土力学14(增1):466-471.

崔正荣,汪禹,仪海豹,等,2019.深部高地应力条件下双孔爆破岩体损伤数值模拟及试验研究[J].爆破36(2):59-64.

胡英国,卢文波,陈明,2012.岩石爆破损伤模型的比选与改进[J].岩土力学33(11):3278-3284.

黄佑鹏,王志亮,毕程程,2018.岩石爆破损伤范围及损伤分布特征模拟分析[J].水利水运工程学报,(5):95-102.

刘亮,卢文波,陈明,等,2016.钻爆开挖条件下岩体临界破碎状态的损伤阈值统计研究[J].岩石力学与工程学报35(6):1133-1140.

沈世伟,李国良,李冬,等,2019.不同角度预制裂隙条件下双孔爆破裂纹扩展规律[J] .煤炭学报12(10):3049-3057.

孙从煌,曲艳东,孔祥清,等,2017.岩石介质中双孔爆破效应的数值模拟研究[J] .爆破4(3):37-45,130.

夏祥,李俊如,李海波,2007.广东岭澳核电站爆破开挖岩体损伤特征研究[J].岩石力学与工程学报26(12):2510-2516.

杨建华,孙文彬,姚池,等,2020.高地应力岩体多孔爆破破岩机制[J].爆炸与冲击40(7):118-127.

杨仁树,王雁冰,岳中文,等,2013.定向断裂双孔爆破裂纹扩展的动态行为[J] .爆炸与冲击7(6):631-637.

岳中文,郭洋,杨煦,2015.切槽孔爆炸载荷下裂纹扩展行为的实验研究[J].岩石力学与工程学报34(10):2018-2026.

文章导航

/

[an error occurred while processing this directive]