[an error occurred while processing this directive] [an error occurred while processing this directive] [an error occurred while processing this directive]
[an error occurred while processing this directive]
采选技术与矿山管理

基于MICE_RF的组合赋权—极限随机树岩爆预测模型

  • 温廷新 ,
  • 苏焕博
展开
  • 辽宁工程技术大学工商管理学院,辽宁 葫芦岛 125105
苏焕博(1997-),男,辽宁辽阳人,硕士研究生,从事矿业系统工程、数据分析与挖掘研究工作。

温廷新(1974-),男,山西太谷人,博士,教授,从事矿业系统工程、数据分析与智能决策研究工作。

收稿日期: 2021-10-11

  修回日期: 2021-12-19

  网络出版日期: 2022-09-14

基金资助

国家自然科学基金项目“基于数据挖掘的煤矿安全风险评价体系研究”(71371091)

Combined Weighting-Extremely Randomized Trees Rockburst Prediction Model Based on MICE_ RF

  • Tingxin WEN ,
  • Huanbo SU
Expand
  • School of Business Administration,Liaoning University of Engineering and Technology,Huludao 125105,Liaoning,China

Received date: 2021-10-11

  Revised date: 2021-12-19

  Online published: 2022-09-14

本文亮点

目前岩爆预测的真实训练数据量小、数据存在缺失,为了更加准确地预测岩爆等级,提出了一种基于链式随机森林多重插补(MICE_RF)算法的组合赋权—极限随机树(ET)预测模型。首先,在选取岩爆灾害主要评判指标的基础上,采用MICE_RF算法插补缺失数据;然后,由改进层次分析法(IAHP)和基于指标相关性的权重确定方法(CRITIC)确定指标主、客观权重,并引入权向量距离概念对指标组合赋权;最后,将插补和赋权后数据集采用ET算法,构建岩爆等级预测模型。利用国内外工程实例数据进行20次随机抽样试验,并与其他模型进行对比分析。结果表明:MICE_RF插补后可显著提高岩爆模型预测效果;改进AHP-CRITIC法较改进前更具优势,该模型平均预测准确率为93.10%,各比较指标结果均优于对比模型,预测结果更稳定。

本文引用格式

温廷新 , 苏焕博 . 基于MICE_RF的组合赋权—极限随机树岩爆预测模型[J]. 黄金科学技术, 2022 , 30(3) : 392 -403 . DOI: 10.11872/j.issn.1005-2518.2022.03.145

Highlights

As a kind of dynamic instability geological disaster with strong abruptness and randomness,rockburst poses a great threat to the safety of personnel,equipment and buildings.Timely and accurate prediction of rockburst grade has become a hot issue in the field of underground engineering.At present,the amount of real training data of rockburst prediction is small and the data is missing.In order to predict the rockburst grade more accurately,a combined weighting-extremely randomized trees(ET) prediction model based on chain random forest multiple interpolation(MICE_RF) algorithm was proposed.According to the characteristics and causes of rockburst,six evaluation indexes including maximum shear stress,uniaxial compressive strength,uniaxial tensile strength,stress coefficient,brittleness coefficient and elastic energy index were selected to form the rockburst evaluation index,and MICE_RF algorithm was used to interpolate the missing data of rockburst data set.Then,a new combined weighting method was proposed,which is the improved analytic hierarchy process(IAHP)-weight determination method based on index correlation(CRITIC),and the weight of each index was comprehensively calculated by using the concept of weight vector distance. Finally,the ET algorithm was used to construct the rockburst prediction model after interpolation,weighting and normalization.Using the existing engineering example data at home and abroad,20 random sampling tests were carried out,and compared with other models to verify the superiority of this model in rockburst grade prediction.In this study,the interpolation effect based on MICE_RF missing value,the combined weighting effect of IAHP-CRITIC index and the comparison of the prediction effects of different models were analyzed and verified respectively.So,the ET rockburst prediction model based on MICE_RF and improved combined weighting was applied and the result of accuracy,precision,recall and RMSE were 93.10%,94.17%,93.44% and 0.2626.The results show that the MICE_RF missing data interpolation method not only increases the available rockburst data set,but also can effectively improve the prediction accuracy of three levels of no rockburst,intermediate rockburst and strong rockburst,and the average prediction accuracy of the complete data set has also been significantly improved.The improved AHP-CRITIC method has more advantages than the previous one,and the ET algorithm is significantly better than other comparison models in the results of four comparison indexes,that is,IAHP-CRITIC-ET model based on MICE_RF can significantly improve the prediction accuracy of rockburst grade,and the prediction results are more stable,which can provide effective guidance for similar projects.

[an error occurred while processing this directive]

山东黄金冶炼公司科技攻关破瓶颈,“银粉酸洗法”增产增效

山东黄金冶炼公司“银粉酸洗法”工艺落地,解决了1#国标白银生产工艺复杂、能耗高、耗时长等问题,进一步提高银粉合格率,取得显著经济效益。

长期以来,湿法冶炼所使用的金泥中含有大量的铜、铅等杂质元素,在后续的电解过程中,铜、铅杂质不断溶解进入电解液,并随阴极银的析出而析出,部分铜、铅离子会水解沉淀进入银粉,这些残留的铜、铅杂质会导致熔铸银只符合2#白银标准,需要返回流程重新电解才能产出1#国标白银。

白银电解是一个耗能大户,不仅需要班组抽出人员专门看管电解电流、电压,还要及时监测电解液的酸性,需要不断接近4 m³电解液,导致生产成本大幅增加,平均生产周期延长4~5个工序,造成大量白银积压,既影响了金属平衡,大量消耗的电力、人力和药剂等资源也不利于车间的效益提升。

为解决这一痛点,黄金冶炼公司组织科研攻关组进行重点攻关,经过2个月的反复研究和摸索,提出了“银粉酸洗法”,即利用车间现有的钛反应釜,加入一定比例氯酸钠和银粉、盐酸进行调制,因银粉比表面积较大,银粉中铜、铅等杂质仅低于2#银标准些许,相对含量很低,可精准地将银粉中大部分的铜、铅等杂质氧化溶解而除去,同时达到了对溶液电位精确控制的目的。因氯酸钠浓度较低,氧化电位低,约为600 mV,而铜、铅的氧化电位为350 mV和-127 mV,该方法又可精准的保留银粉单质,直接将2#银粉转化为国标1#银粉。

该方法投用后,既缩短了白银电解精炼生产周期,大幅减少白银积压,同时节省了药剂、能源和人力消耗,年产生经济效益约40余万元。

脚注

山东黄金集团有限公司

http://www.goldsci.ac.cn/article/2022/1005-2518/1005-2518-2022-30-3-392.shtml

Acurna E Rodriguez C2004.The treatment of missing values and its effect in the classifier accuracy[C]//Proceedings of the Meeting of the International Federation of Classification Societies (IFCS).Chicago:International Federation Classification Societies: 639-647.

Afraei S Shahriar K Madani S H2019.Developing intelligent classification models for rockburst prediction after recognizing significant predictor variables,Section 1:Literature review and data preprocessing procedure[J].Tunnelling and Underground Space Technology,83:324-353.

Boshuizen H C Knook D L1999.Multiple imputation of missing blood pressure covariates in survival analysis[J].Statistics in Medicine,(7):681-694.

Chen Juan Wang Xianyu Luo Lingling,et al,2020.Missing value filling effect:A comparison between machine learning and statistical learning[J].Statistics and Decision Making36 (17):28-32.

Diakoulaki D Mavrotas G Papayannakis L1995.Determining objective weights in multiple criteria problems:The CRITIC method[J].Computers and Operations Research22(7):763-770.

Huang Jian Xia Yuanyou Lin Manqing2019.Study on multi-dimensional cloud model prediction of rockburst based on improved combination weighting[J].Chinese Journal of Safety Science29 (7):26-32.

Li Mingliang Li Kegang Qin Qingci,et al,2021.Discussion and selection of machine learning algorithm model for rockburst intensity grade prediction [J].Chinese Journal of Rock Mechanics and Engineering40 (Supp.1):2806-2816.

Li Renhao Gu Helong Li Xibing,et al,2020.A PSO-RBF neural network model for rockburst tendency prediction [J].Gold Science and Technology28(1):134-141.

Liu Fei2020.Study on the Evolution and Warning of Rockbursts in Deep-buried Tunnels of the Hanjiang-to-Weihe River Diversion Project by Microseismic Monitoring [D].Dalian:Dalian University of Technology.

Liu Fengqin2009.Multiple imputation of missing values of income variables based on chain equation[J].Statistical Research26 (1):71-77.

Long Yanfang2017.Research on Short-term Traffic Flow Prediction Model Based on Ensembles of Extremely Randomized Trees[D].Changsha:Hunan University.

Lu Furan Chen Jianhong2018.Rockburst prediction method based on AHP and entropy weight TOPSIS model [J].Gold Science and Technology26(3):365-371.

Nugroho H Utama N P Surendro K2021.Class center-based firefly algorithm for handling missing data[J].Journal of Big Data8(1):1-14.

Qian Chao Chen Jianxun Luo Yanbin,et al,2016.Missing data interpolation method for highway tunnel operation based on random forest [J].Transportation System Engineering and Information16 (3):81-87.

Saaty T L1994.How to make a decision:The analytic hierarchy process[J].Interfaces24(6):19-43.

Shang Huandi Wang Ping Pei Mingsong,et al,2017.Rockburst prediction based on rough set and weighted grey correlation analysis[J].Industrial Safety and Environmental Protection43 (6):47-51.

Song Liang Wan Jianzhou2020.Comparative study on missing data interpolation methods[J].Statistics and Decision Ma-king36(18):10-14.

Tan Wenkan Ye Yicheng Hu Nanyan,et al,2021.Strong rockburst prediction based on LOF and improved SMOTE algorithm[J].Chinese Journal of Rock Mechanics and Engine-ering40(6):1186-1194.

Tang Zhili Xu Qianjun2020.Research on rockburst prediction based on nine machine learning algorithms[J].Chinese Journal of Rock Mechanics and Engineering39(4):773-781.

Tian Rui Meng Haidong Chen Shijiang,et al,2020a.Prediction of intensity classification of rockburst based on deep neural network [J].Journal of China Coal Society45(Supp.1):191-201.

Tian Rui Meng Haidong Chen Shijiang,et al,2020b.Prediction model of rockburst intensity classification based on RF-AHP-Cloud model[J].Chinese Journal of Safety Science30(7):166-172.

Wang Junxia Zhang Yu Yan Zheming,et al,2013.Research on performance evaluation of rural public goods supply based on combination weighting method[J].Journal of Northwest University(Philosophy and Social Sciences Edition)43(2):117-121.

Wang Xianlong Feng Zao Zhao Yanfeng2021.An active learning method for unbalanced sample set of pipeline blockage[J].Chemical Automation and Instrumentation48(3):222-231.

Wang Yuanhan Li Wodong Li Qiguang,et al,1998 .Fuzzy mathematics comprehensive evaluation method for rockburst prediction[J].Chinese Journal of Rock Mechanics and Engineering,(5):15-23.

Wu H W Zhen J Zhang J2020.Urban rail transit operation safety evaluation based on an improved CRITIC method and cloud model[J].Journal of Rail Transport Planning & Management,16:100206.

Wu Tongyu Wu Shaoxiong2018.Missing value interpolation of statistical data based on kernel principal component analysis and particle swarm optimization support vector machine[J].Statistics and Decision Making34(8):21-24.

Xie X Jiang W Guo J2021.Research on rockburst prediction classification based on GA-XGB model[J].IEEE Access,9:83993-84020.

Xie Xuebin Li Dexuan Kong Lingyan,et al,2020.Prediction model of rockburst tendency grade based on CRITIC-XGB algorithm[J].Chinese Journal of Rock Mechanics and Engineering39(10):1975-1982.

Yin Xin Liu Quansheng Wang Xinyu,et al,2020.Prediction model of rockburst intensity classification based on combined weighting and attribute interval recognition theory [J]. Journal of China Coal Society45(11):3772-3780.

Zhang Xiangyu2021.Study on Rock Burst Mechanism and Comprehensive Prediction Method of Rock Mass with Structural Plane [D].Jinan:Shandong University.

Zheng Y Zhong H Fang Y,et al,2019.Rockburst prediction model based on entropy weight integrated with grey relational BP neural network[J].Advances in Civil Engineering,(4):1-8.

陈娟,王献雨,罗玲玲,等,2020.缺失值填补效果:机器学习与统计学习的比较[J].统计与决策36(17):28-32.

黄建,夏元友,吝曼卿,2019.基于改进组合赋权的岩爆多维云模型预测研究[J].中国安全科学学报29(7):26-32.

李明亮,李克钢,秦庆词,等,2021.岩爆烈度等级预测的机器学习算法模型探讨及选择[J].岩石力学与工程学报40(增1):2806-2816.

李任豪,顾合龙,李夕兵,等,2020.基于PSO-RBF神经网络模型的岩爆倾向性预测[J].黄金科学技术28(1):134-141.

刘飞,2020.引汉济渭深埋隧洞岩爆孕育特征与微震监测预警研究[D].大连:大连理工大学.

刘凤芹,2009.基于链式方程的收入变量缺失值的多重插补[J].统计研究26(1):71-77.

龙艳芳,2017.基于极限随机树集成的短时交通流预测模型研究[D].长沙:湖南大学.

卢富然,陈建宏,2018.基于AHP和熵权TOPSIS模型的岩爆预测方法[J].黄金科学技术26(3):365-371.

钱超,陈建勋,罗彦斌,等,2016.基于随机森林的公路隧道运营缺失数据插补方法[J].交通运输系统工程与信息16(3):81-87.

商欢迪,王平,裴明松,等,2017.基于粗糙集和加权灰色关联分析的岩爆预测[J].工业安全与环保43(6):47-51.

宋亮,万建洲,2020.缺失数据插补方法的比较研究[J].统计与决策36(18):10-14.

谭文侃,叶义成,胡南燕,等,2021.LOF与改进SMOTE算法组合的强烈岩爆预测[J].岩石力学与工程学报40(6):1186-1194.

汤志立,徐千军,2020.基于9种机器学习算法的岩爆预测研究[J].岩石力学与工程学报39(4):773-781.

田睿,孟海东,陈世江,等,2020a.基于深度神经网络的岩爆烈度分级预测[J].煤炭学报45(增1):191-201.

田睿,孟海东,陈世江,等,2020b.RF-AHP-云模型下岩爆烈度分级预测模型[J].中国安全科学学报30(7):166-172.

王俊霞,张玉,鄢哲明,等,2013.基于组合赋权方法的农村公共产品供给绩效评价研究[J].西北大学学报(哲学社会科学版)43(2):117-121.

王显龙,冯早,赵燕锋,2021.一种面向管道堵塞不均衡样本集的主动学习方法[J].化工自动化及仪表48(3):222-231.

王元汉,李卧东,李启光,等,1998.岩爆预测的模糊数学综合评判方法[J].岩石力学与工程学报,(5):15-23.

吴桐雨,吴少雄,2018.基于核主成分分析和粒子群优化支持向量机的统计数据缺失值插补[J].统计与决策34(8):21-24.

谢学斌,李德玄,孔令燕,等,2020.基于CRITIC-XGB算法的岩爆倾向等级预测模型[J].岩石力学与工程学报39(10):1975-1982.

殷欣,刘泉声,王心语,等,2020.基于组合赋权和属性区间识别理论的岩爆烈度分级预测模型[J].煤炭学报45(11):3772-3780.

张翔宇,2021.含结构面岩体岩爆发生机理及综合预测方法研究[D].济南:山东大学.

文章导航

/

[an error occurred while processing this directive]