img

QQ群聊

img

官方微信

  • CN 62-1112/TF 
  • ISSN 1005-2518 
  • 创刊于1988年
高级检索
采选技术与矿山管理

冲击荷载作用下热处理花岗岩动态力学特性研究

  • 周盛全 ,
  • 王瑞 ,
  • 田诺成 ,
  • 李栋伟
展开
  • 1.安徽理工大学土木建筑学院,安徽 淮南 232001
    2.衢州学院建筑工程学院,浙江 衢州 324000
    3.东华理工大学土木与建筑工程学院,江西 南昌 330013
周盛全(1975-),男,安徽安庆人,教授,从事岩土工程、城市地下空间工程理论与技术方面的研究工作。lqpzsq@163.com

收稿日期: 2021-11-12

  修回日期: 2022-02-21

  网络出版日期: 2022-06-17

基金资助

国家自然科学基金项目“富水地层人工冻结帷幕融沉注浆渗透机理及注浆固结体本构模型研究”(41977236);“滨海软土地层人工冻结帷幕形成机理及蠕变损伤耦合本构模型研究”(41672278);江西省自然科学基金项目“河向冲积层人工冻结帷幕融沉注浆渗透机理及注浆固结体本构模型研究”(20192ACBL20002)

Research on Dynamic Mechanical Properties of Heat-treated Granite Under Impact Loading

  • Shengquan ZHOU ,
  • Rui WANG ,
  • Nuocheng TIAN ,
  • Dongwei LI
Expand
  • 1.School of Civil Engineering and Architecture, Anhui University of Science and Technology, Huainan 232001, Anhui, China
    2.College of Civil Engineering and Architecture, Quzhou University, Quzhou 324000, Zhejiang, China
    3.School of Civil and Architectural Engineering, East China University of Technology, Nanchang 330013, Jiang -xi, China

Received date: 2021-11-12

  Revised date: 2022-02-21

  Online published: 2022-06-17

摘要

为研究冲击速度和热处理温度对黑云母花岗岩动态力学特性的影响,利用改进的霍普金森压杆系统对25~800 ℃共9个温度等级的热处理试样分别进行3种弹速下的冲击压缩试验。试验结果表明:随着冲击速度的增加,25~700 ℃热处理试样的应力—应变曲线由“Ⅱ型”转变为“Ⅰ型”,而800 ℃热处理试样均表现出“Ⅰ型”应力—应变曲线特征。同一温度热处理下试块的峰值应力、应变和平均应变均随动荷载的升高而增大。相同的冲击速度下,300 ℃热处理试样的动力学性能有所改善,500 ℃后试样的动力学性能开始逐渐劣化。同一温度热处理试样的破碎程度随冲击速度的增加而增加;相同冲击速度下,热处理试样的破碎程度随温度的升高先减弱后增强。

本文引用格式

周盛全 , 王瑞 , 田诺成 , 李栋伟 . 冲击荷载作用下热处理花岗岩动态力学特性研究[J]. 黄金科学技术, 2022 , 30(2) : 222 -232 . DOI: 10.11872/j.issn.1005-2518.2022.02.167

Abstract

In order to study the influence of impact velocity and heat treatment temperature on the dynamic mechanical properties of biotite granite,the improved Hopkinson Pressure Bar system was used to conduct impact compression tests on the heat-treated granite at 25~800 ℃ under three impact velocities.The experiment results show that with the impact velocity increasing,the stress-strain curves of the heat-treated samples at 25~700 ℃ change from “type Ⅱ” to “type Ⅰ”.But the heat-treated samples at 800 ℃ all show the “type Ⅰ” stress-strain curve.The peak stress,average strain and peak strain of the sample at the same temperature increase with the impact velocity increasing,showing obvious loading rate effect.The elastic modulus does not change much with the impact velocity,and the loading rate effect is not obvious.Under the same impact velocity,the dynamic properties of the heat-treated samples at 300 ℃ are improved.After 500 ℃,the dynamic properties of the samples begin to gradually deteriorate,and the heat-treated samples at 800 ℃ have the weakest dynamic properties.The relationship between peak stress,average strain rate,peak strain and elastic modulus and heat treatment temperature can be expressed by single exponential function.Under the same treatment temperature,the damage degree of granite increases with the increase of impact velocity.Under the same impact velocity,the fragmentation degree of the heat-treated sample at 300 ℃ is the smallest,and the heat-treated sample at 800 ℃ is the most serious.From the field emission scanning electron microscope image,it can be seen that the fundamental reason for the change of rock macro mechanical properties is that the temperature changes the microstructure inside the rock.

参考文献

null Chen Y L, Ni J, Shao W,et al,2012.Experimental study on the influence of temperature on the mechanical properties of granite under uniaxial compression and fatigue loading[J].International Journal of Rock Mechanics and Mining Sciences,56(15):62-66.
null Clover P W J, Baud P, Darot M,et al,1995.α/β phase transition in quartz monitored using acoustic emis sons[J].Geophysical Journal of the Royal Astronomical Society,120:775-782.
null Dai F, Huang S, Xia K W,et al,2010.Some fun damental issues in dynamic compression and tension tests of rocks using Split Hopkinson Pressure Bar[J].Rock Mechanics and Ro-ck Engineering,43(6):657-666.
null Frew D J, Forrestal M J, Chen W,2001.A split Hop-kinson pressure bar technique to determine compressive stress-strain data for rock materials[J].Experimental Mechanics,41(1):40-46.
null He Manchao, Guo Pingye,2013.Deep rock mass thermody namic effect and temperature control measures[J].Chinese Journal of Rock Mechanics and Engineering,32(12):2377-2393.
null Huang S, Xia K W,2015.Effect of heat-treatment on the dynamic compressive strength of Longyou sand stone[J].Engine-ering Geology,191:1-7.
null Huang Y H, Yang S Q, Tian W L,et al,2017. Physical and mechanical behavior of granite containing pre-existing holes after high temperature treat ment[J]. Archives of Civil and Mechanical Engineering, 17: 912-925.
null ISRM(International Society for Rock Mechanics),1975. Commission on terminology,symbols and graphic representation [S].Lisbon,Portugal:ISRM.
null Li Ming, Mao Xianbiao, Cao Lili,et al,2014.Experimental study of mechanical properties on strain rate effect of sandstones after high temperature[J].Rock and Soil Mechanics,35(12): 3479-3488.
null Li X B, Lok T S, Zhao J,et al,2000.Oscillation elimination in the Hopkinson bar apparatus and resultant complete dynamic stress-strain curves for rocks[J].International Journal of Rock Mechanics and Mining Sciences,37(7): 1055-1060.
null Li Xibing,2014.Rock Dynamics Fundamentals and Applications[ M].Beijing:Science Press.
null Liu S, Xu J Y,2015.Effect of strain rate on the dynamic compressive mechanical behaviors of rock material subjected to high temperatures[J].Mechanics of Mate rials,82:28-38.
null Liu Shi, Xu Jinyu,2014.Effect of high temperature on dynamic compressive mechanical properties of granite[J].Journal of Vibration and Shock,33(4):195-198.
null Lok T S, Li X B, Liu D,et al,2002.Testing and response of large diameter brittle materials subjected to high strain rate[J].Journal of Materials in Civil Engineering,14(3): 262-269.
null Lu C, Sun Q, Zhang W Q,et al,2017.The effect of high temperature on tensile strength of sandstone[J]. Applied Thermal Engineering,111:573-579.
null Mahanta B, Singh T N, Ranjith P G,2016.Influence of ther mal treatment on mode Ⅰ fracture toughness of certain Indian rocks[J].Engineering Geology,210:103-114.
null Wu G, Wang Y, Swift G,et al,2013.Laboratory investiga tion of the effects of temperature on the mechanical properties of sandstone[J].Geotechnical and Geological Engineering,31(2):809-816.
null Wu Gang, Wang Deyong, Zhai Songtao,2012.Acoustic emission characteristics of sandstone after high temperature under uniaxial compression[J].Rock and Soil Mechanics, 33(11): 3237-3242.
null Xie Heping, Gao Feng, Ju Yang,2015.Research and develop ment of rock mechanics in deep ground engineering [J].Chinese Journal of Rock Mechanics and Engineering,34(11): 2161-2178.
null Xu Jinyu, Liu Shi,2013.Effect of impact velocity on dynamic mechanical behaviors of marble after high temperatures [J]. Chinese Journal of Geotechnical Engineering, 35(5):879-883.
null Xu Jinyu, Xiaocong Lü, Zhang Jun,2010.Research on energy prop erties of rock cyclical impact damage under confining pressure[J].Chinese Journal of Rock Mechanics and Engineering,29(Supp.2):4159-4165.
null Yang Liyun, Wang Qingcheng, Ding Chenxi,et al,2020.Experimental analysis on the mechanism of slot ting blasting in deep rock mass[J].Journal of Vibra tion and Shock,39(2):40-46.
null Yin Guangzhi, Li Xiaoshuang, Zhao Hongbao,2009. Exper imental investigation on mechanical properties of coarse sandstone after high temperature under conven tional triaxial compression[J]. Chinese Journal of Rock Mechanics and Engineering, 28(3): 598-604.
null Yin Tubing, Li Xibing, Zhou Zilong,et al,2007.Study on mechanical properties of post-high-temperature sand-stone[J].Chinese Journal of Underground Space and Engineering,3(6):1060-1063.
null Zhang Y L, Zhao G F, Li Q,2020.Acoustic emis sion uncovers thermal damage evolution of rock[J].International Journal of Rock Mechanics and Mining Sciences,132:104388.
null Zhou Y X, Xia K, Li X B,et al,2012.Suggested methods for determining the dynamic strength parameters and Mode-I fracture toughness of rock materials[J].International Jou-rnal of Rock Mechanics and Mining Sciences,49:105-112.
null 何满潮,郭平业,2013.深部岩体热力学效应及温控对策[J].岩石力学与工程学报,32(12):2377-2393.
null 李明,茅献彪,曹丽丽,等,2014.高温后砂岩动力特性应变率效应的试验研究[J].岩土力学,35(12):3479-3488.
null 李夕兵,2014.岩石动力学基础与应用[M].北京:科学出版社.
null 刘石,许金余,2014.高温作用对花岗岩动态压缩力学性能的影响研究[J].振动与冲击,33(4):195-198.
null 吴刚,王德咏,翟松韬,2012.单轴压缩下高温后砂岩的声发射特征[J].岩土力学,33(11):3237-3242.
null 谢和平,高峰,鞠杨,2015.深部岩体力学研究与探索[J].岩石力学与工程学报,34(11):2161-2178.
null 许金余,刘石,2013.加载速率对高温后大理岩动态力学性 能的影响研究[J].岩土工程学报,35(5):879-883.
null 许金余,吕晓聪,张军,2010.围压条件下岩石循环冲击损伤的能量特性研究[J].岩石力学与工程学报,29(增2):4159-4165.
null 杨立云,王青成,丁晨曦,等,2020.深部岩体中切槽爆破机理实验分析[J].振动与冲击,39(2):40-46.
null 尹光志,李小双,赵洪宝,2009.高温后粗砂岩常规三轴压缩条件下力学特性试验研究[J].岩石力学与工程学报,28(3):598-604.
null 尹土兵,李夕兵,周子龙,等,2007.粉砂岩高温后动态力学特性研究[J].地下空间与工程学报,3(6):1060-1063.
文章导航

/