img

QQ群聊

img

官方微信

  • CN 62-1112/TF 
  • ISSN 1005-2518 
  • 创刊于1988年
高级检索
采选技术与矿山管理

迎接深部开采高地温环境的挑战——岩石真三轴试验机地温模拟平台研究

  • 傅璇 ,
  • 黄麟淇 ,
  • 陈江湛 ,
  • 吴阳春 ,
  • 李夕兵
展开
  • 中南大学资源与安全工程学院,湖南 长沙 410083
傅璇(1997-),女,福建三明人,硕士研究生,从事深部地下工程灾害防治研究工作。fuxuan97@csu.edu.cn

收稿日期: 2021-10-29

  修回日期: 2021-12-22

  网络出版日期: 2022-04-25

基金资助

国家自然科学基金项目“深部多场耦合岩体致灾能量诱变试验系统”(51927808)

Meeting the Challenge of High Geothermal Ground Temperature Environ-ment in Deep Mining—Research on Geothermal Ground Temperature Simula-tion Platform of Rock True Triaxial Testing Machine

  • Xuan FU ,
  • Linqi HUANG ,
  • Jiangzhan CHEN ,
  • Yangchun WU ,
  • Xibing LI
Expand
  • School of Resources and Safety Engineering,Central South University,Changsha 410083,Hunan,China

Received date: 2021-10-29

  Revised date: 2021-12-22

  Online published: 2022-04-25

摘要

为迎接深部开采高地温环境的挑战,提高真三轴试验设备的高地应力—高地温耦合能力,开展了岩石真三轴试验机地温模拟平台的研发工作。通过建立数值模拟(COMSOL)、变异系数法(RSD)与多属性决策问题理想解法(TOPSIS)相结合的真三轴高地应力—高地温耦合加载方案评估体系,对3种加温方案进行综合指标评估和方案优选。为了取得贴近实际情况的最佳试验效果,选取岩石表面加温均匀度、加压杆水冷外侧散热量、岩样平均升温速率、加压板应变值和经济成本作为评估方案优劣的5项基础评价指标。运用COMSOL Multiphysics仿真软件模拟3种加温方案,通过变异系数法,将模拟所得的数据进行客观赋值,并将相应的指标数值代入TOPSIS模型中进行综合评价。结果显示:六面加热棒加温、环状加热器加温和液体传热加温3种方案综合评价指数分别为0.4288、0.9447和0.5532,环状加热器加温的方式与正理想解贴近度达到0.9447,为最优决策。该评估体系将理论方法、数值计算与数值模拟相结合,为寻找最优的真三轴试验设备加温方案提供了可靠的理论依据和试验基础,对当前深部岩石开采所需的高地应力—高地温耦合能力的仪器研究具有指导意义。

本文引用格式

傅璇 , 黄麟淇 , 陈江湛 , 吴阳春 , 李夕兵 . 迎接深部开采高地温环境的挑战——岩石真三轴试验机地温模拟平台研究[J]. 黄金科学技术, 2022 , 30(1) : 72 -84 . DOI: 10.11872/j.issn.1005-2518.2022.01.160

Abstract

In order to meet the challenge of the high ground temperature environment of deep mining,realize the real simulation of the environment,and improve the high ground stress-high ground temperature coupling capability of the true triaxial test equipment,the research and development of the ground temperature simulation platform of the rock true triaxial test machine has been carried out. The exploration and establishment of three kinds of heating schemes for the ground temperature simulation platform are the six-sided heating rod heating scheme based on solid medium heat transfer,the ring heater heating scheme and the liquid heat transfer heating scheme based on liquid medium heat transfer. Through the establishment of a true triaxial high ground stress-high ground temperature coupled loading program evaluation system combining numerical simulation (COMSOL),coefficient of variation method (RSD) and ideal solution for multi-attribute decision-making problems (TOPSIS),comprehensive indicators for three heating programs evaluation and scheme optimization. In order to obtain the best test results close to reality,the five basic evaluations of the quality of the evaluation plan are the uniformity of heating on the rock surface,the heat dissipation from the outside of the pressurized rod,the average heating rate of the rock sample,the strain value of the pressurized plate and the economic cost index. The COMSOL Multiphysics simulation software was used to simulate three heating schemes. Through the coefficient of variation method,the simulated data were objectively assigned,and the corresponding index values ??were brought into the TOPSIS model for comprehensive evaluation. The evaluation results show that the comprehensive evaluation indexes of the three schemes of six-sided heating rod heating,ring heater heating,and liquid heat transfer heating are 0.4288,0.9447 and 0.5532,respectively. The heating method of the ring heater is consistent with a positive ideal solution. The closeness degree reaches 0.9447,which is the optimal decision after comprehensively considering the five indicators. This evaluation system combines theoretical methods,numerical calculations and numerical simulations,and provides a reliable theoretical basis and experimental basis for finding the optimal heating scheme for true triaxial test equipment. The instrumental research on the coupling capability of ground temperature is of guiding significance.

参考文献

null Chen B, Ren Q Y, Wang F F, al et,2021. Inversion analysis of in-situ stress field in tunnel fault zone considering high geothermal[J]. Geotechnical and Geological Engineering,39:5007-5019.
null Frash LP, Gutierrez M, Hampton J,2014. True-triaxial apparatus for simulation of hydraulically fractured multi-borehole hot dry rock reservoirs[J]. International Journal of Rock Mechanics and Mining Sciences,70:496-506.
null Gong Jian, Hu Nailian, Cui Xiang, al et,2014. Prediction of rockburst tendency based on AHP-TOPSIS evaluation model[J]. Chinese Journal of Rock Mechanics and Engineering,33(7):1442-1448.
null Hao Zhenxing,2017. Research on Temperature Control System of High Temperature True Three-axis Press Based on Embedded[D]. Taiyuan:Taiyuan University of Technology.
null He M C, Wang Q, Wu Q Y,2021. Innovation and future of mining rock mechanics[J].Journal of Rock Mechanics and Ge-otechnical Engineering,13(1):1-21.
null He Manchao, Xie Heping, Peng Suping, al et,2009. Research on deep mining rock mass mechanics[C]//Research Progress of Soft Rock Engineering and Deep Disaster Control in China——The 4th Deep Rock Mechanics and Engineering Disaster Control Symposium and China University of Mining and Technology(Beijing) Centennial Anniversary Academic Conference Proceedings.Xuzhou:China University of Mining and Technology: 10-19.
null Hu Sherong, Peng Jichao, Huang Can, al et,2011. Current status and progress of research on deep mine mining more than one thousand meters[J].China Mining Industry,20(7):105-110.
null Jiang T T, Zhang J H, Wu H,2016. Experimental and numerical study on hydraulic fracture propagation in coalbed methane reservoir[J]. Journal of Natural Gas Science and Engineering,35:455-467.
null Li Xibing,2014. Foundation and Application of Rock Dynamics[M]. Beijing:Science Press.
null Li Xibing, Gong Fengqiang,2021. Research progress and prospects of rock mechanics in deep mining based on combined dynamic and static loading tests[J]. Journal of China Coal Society,46(3):846-866.
null Li Xibing, Gong Fengqiang, Du Kun, al et,2016. Progress report on experimental research of rockburst under high-stress rock mass dynamic disturbance[J]. Science & Technology Innovation Herald,13(15):173.
null Li Xibing, Huang Linqi, Zhou Jian, al et,2019. Review and prospect of hard rock mining technology[J]. The Chinese Journal of Nonferrous Metals,29(9):1828-1847.
null Li Xibing, Liu Bing,2018. Review and exploration on the status quo of backfill mining in hard rock mines[J].Gold Science and Technology,26(4):492-502.
null Li Xibing, Yao Jinrui, Gong Fengqiang,2011. Dynamic problems in deep mining of hard rock metal mines[J].The Chinese Journal of Nonferrous Metals,21(10):2551-2563.
null Li Xibing, Zhou Jian, Huang Linqi, al et,2020. Review and pro-spects of China’s gold mining technology[J].Gold,41(9):41-50.
null Ma Jianxiong, Xue Linfu, Zhao Jinmin, al et,2019. Numerical simulation of temperature field in in-situ mining of oil shale[J]. Science Technology and Engineering,19(5):94-103.
null Ma Xiao, Ma Dongdong, Hu Dawei, al et,2019. Development and application of real-time high-temperature true triaxial test system[J].Chinese Journal of Rock Mechanics and Engineering,38(8):1605-1614.
null Nasseri M, Goodfellow S, Lombos L, al et,2014. 3-D transport and acoustic properties of fontainebleau sandstone during true-triaxial deformation experiments[J].International Jou-rnal of Rock Mechanics and Mining Sciences,69:1-18.
null Niu Xuechao, Zhang Qingxi, Yue Zhongwen,2013.Current situation and development trend of rock triaxial testing machine[J].Rock and Soil Mechanics,34(2):600-607.
null Qin Hong, Zhang Xin, Bai Jingru, al et,2014. Experimental study on temperature distribution in oil shale gas heat carrier dry distillation furnace[J].Chemical Machinery,41(6):727-732.
null Ren Aihua,1988. Newly developed 800t high temperature and high pressure servo triaxial rheometer[J]. Chinese Journal of Geophysics,(2):236.
null Ren Song, Yang Chunhe, Jiang Deyi, al et,2011. Development and application of high-temperature triaxial salt rock dissolution characteristics testing machine[J]. Chinese Journal of Rock Mechanics and Engineering,30(2):289-295.
null Shi Liangqi, Song Ruiqing, Wu Xiuquan,1986.Development of high pressure and temperature triaxial experimental vessels used with either gas or liquid media[J]. Chinese Journal of Rock Mechanics and Engineering,(3):301-308.
null Shi Zequan, Zhou Meiqing,1990. Design of 800MPa high temperature and high pressure triaxial chamber[J].Chinese Jou-rnal of Geophysics,(2):202-207.
null Wang Yunmin,2011. Opportunities and challenges faced by the metal mining industry and technical countermeasures[J]. Modern Mining,27(1):1-14.
null Xie Heping, Gao Feng, Ju Yang,2015. Research and exploration of deep rock mass mechanics[J].Chinese Journal of Rock Mechanics and Engineering,34(11):2161-2178.
null Yin Guangzhi, Li Minghui, Xu Jiang, al et,2015. Development and application of a multifunctional true triaxial fluid-solid coupling test system[J]. Chinese Journal of Rock Mechanics and Engineering,34(12):2436-2445.
null Zhao Wei, Lin Jian, Wang Shufang, al et,2013. Influence of human activities on groundwater environment based on coefficient variation method[J]. Environmental Science,34(4):1277-1283.
null Zhao Yangsheng, Wan Zhijun, Zhang Yuan, al et,2008.Develo-pment of a 20MN servo-controlled high-temperature and high-pressure rock mass triaxial testing machine[J].Chine-se Journal of Rock Mechanics and Engineering,194(1):1-8.
null 龚剑,胡乃联,崔翔,等,2014.基于AHP-TOPSIS评判模型的岩爆倾向性预测[J].岩石力学与工程学报,33(7):1442-1448.
null 郝振兴,2017. 基于嵌入式的高温真三轴压力机温度控制系统研究[D]. 太原:太原理工大学.
null 何满潮,谢和平,彭苏萍,等,2009. 深部开采岩体力学研究[C]//中国软岩工程与深部灾害控制研究进展——第四届深部岩体力学与工程灾害控制学术研讨会暨中国矿业大学(北京)百年校庆学术会议论文集.徐州:中国矿业大学: 10-19.
null 胡社荣,彭纪超,黄灿,等,2011. 千米以上深矿井开采研究现状与进展[J]. 中国矿业,20(7):105-110.
null 李夕兵,2014.岩石动力学基础与应用[M].北京:科学出版社.
null 李夕兵,宫凤强,2021. 基于动静组合加载力学试验的深部开采岩石力学研究进展与展望[J]. 煤炭学报,46(3):846-866.
null 李夕兵,宫凤强,杜坤,等,2016. 高应力岩体动力扰动下发生岩爆的试验研究进展报告[J]. 科技创新导报,13(15):173.
null 李夕兵,黄麟淇,周健,等,2019. 硬岩矿山开采技术回顾与展望[J]. 中国有色金属学报,29(9):1828-1847.
null 李夕兵,刘冰,2018.硬岩矿山充填开采现状评述与探索[J].黄金科学技术,26(4):492-502.
null 李夕兵,姚金蕊,宫凤强,2011. 硬岩金属矿山深部开采中的动力学问题[J].中国有色金属学报,21(10):2551-2563.
null 李夕兵,周健,黄麟淇,等,2020.中国黄金矿山开采技术回顾与展望[J]. 黄金,41(9):41-50.
null 马建雄,薛林福,赵金岷,等,2019. 油页岩原位开采温度场的数值模拟[J]. 科学技术与工程,19(5):94-103.
null 马啸,马东东,胡大伟,等,2019. 实时高温真三轴试验系统的研制与应用[J]. 岩石力学与工程学报,38(8):1605-1614.
null 牛学超,张庆喜,岳中文,2013.岩石三轴试验机的现状及发展趋势[J].岩土力学,34(2):600-607.
null 秦宏,张鑫,柏静儒,等,2014. 油页岩气体热载体干馏炉内温度分布的试验研究[J]. 化工机械,41(6):727-732.
null 任爱华,1988. 新研制的800t高温高压伺服三轴流变仪[J]. 地球物理学报,(2):236.
null 任松,杨春和,姜德义,等,2011. 高温三轴盐岩溶解特性试验机研制及应用[J]. 岩石力学与工程学报,30(2):289-295.
null 施良骐,宋瑞卿,吴秀泉,1986.气液两用高温高压岩石三轴实验容器的研制[J].岩石力学与工程学报,(3):301-308.
null 石泽全,周枚青,1990. 800MPa高温高压三轴室设计研究[J]. 地球物理学报,(2):202-207.
null 王运敏,2011. 金属矿采矿工业面临的机遇和挑战及技术对策[J]. 现代矿业,27(1):1-14.
null 谢和平,高峰,鞠杨,2015. 深部岩体力学研究与探索[J]. 岩石力学与工程学报,34(11):2161-2178.
null 尹光志,李铭辉,许江,等,2015. 多功能真三轴流固耦合试验系统的研制与应用[J]. 岩石力学与工程学报,34(12):2436-2445.
null 赵微,林健,王树芳,等,2013. 变异系数法评价人类活动对地下水环境的影响[J]. 环境科学,34(4):1277-1283.
null 赵阳升,万志军,张渊,等,2008. 20MN伺服控制高温高压岩体三轴试验机的研制[J]. 岩石力学与工程学报,194(1):1-8.
文章导航

/