收稿日期: 2021-05-17
修回日期: 2021-11-07
网络出版日期: 2022-03-07
基金资助
国家重点研发计划重点专项“煤与共伴生战略性金属矿产协调开采成套方法”(2021YFC2902102);国家重点研发计划政府间国际科技创新合作重点专项“地下金属矿规模化绿色开采关键技术合作研究”(2018YFE0123000)
Model of the Height of Overburden Fracture Zone Based on Void Conservation
Received date: 2021-05-17
Revised date: 2021-11-07
Online published: 2022-03-07
预测与控制矿体开采覆岩裂隙带发育高度,是沉积型层系矿体上行开采与保水开采的关键。基于空隙量守恒理论,分析了上覆岩层随采动空隙扩散的岩移规律,以矿体采高、覆岩碎胀系数、裂隙带残余空隙率、顶板垮落和放顶高度为主控因素,建立了预测覆岩裂隙带发育高度的裂隙拱模型
黄丹 , 陈何 , 郑志杰 . 基于空隙量守恒的覆岩裂隙带发育高度模型[J]. 黄金科学技术, 2021 , 29(6) : 843 -853 . DOI: 10.11872/j.issn.1005-2518.2021.06.057
Prediction and control of the development height of overburden fracture zone in ore-mining is the key of upward mining and water-retaining mining for sedimentary stratum series.When mining in layered strata,the process of caving zone and fractured zone of overlying strata movement tending to bending subsidence zone can be regarded as the result of the diffusion of voids in goaf from bottom to top.When the seam mining span is small,fractures in the overburden arched upward,and formed “fracture arch”. As the voids in the fracture arch continue to spread upwards,when the rock voidage in the fractured arch reaches the residual dilatancy coefficient under the action of rock pressure compound extrusion,the stress equilibrium state is formed between the mining affected area and the outer rock strata. At this time,the fracture arch no longer rise upward. Increasing the mining span of the seam will break the form of fracture arch and make the range of fracture arch to fracture zone. The highest arch height of the fracture arch the same as the height of the fracture zone. Above the height range of the fracture arch is the bending subsidence zone.Based on the theory of void conservation in this paper,the strata movement rule of overlying strata with mining void diffusion was analyzed. By analyzing the limiting geometry condition of fractured arch developing upward with mining-induced voids,while taking mining height,expansion coefficient of overburden rock,residual voidage,height of roof caving as main control factors,the fissure arch model for predicting development height of overburden fracture zone was established
null | Fan Limin, Ma Xiongde, Wu Qunying, al et,2020.Analysis on technical points of water-preserving coal mining technical specifications[J].Coal Science and Technology,48(9):81-87. |
null | Feng Chao, Dai Gelian,2019.Prediction of developmental hei-ght of water flowing fractured zone under mining conditions[J].Coal Technology,38(12):94-98. |
null | Gao Zeming,2021.Study on height of water conducting development in goaf[J].Coal Technology,40(1):78-81. |
null | Hao Qinwang,1988.Void diffusion model for mined strata and analysis of influence of void sources[J].Journal of China University of Mining & Technology,(2):33-39. |
null | He Huaping,2019.Comparison of results from numerical simulation and formula calculation in “three zones” division of overlying strata in gob[J].Coal Technology,38(6):51-54. |
null | Hou Gongyu, Hu Tao, Li Zixiang, al et,2020.Fiber optic strain characterization of “two zones” deformation of overburden mining based on BOFDA[J].Journal of Mining and Safety Engineering,37(2):224-237. |
null | Huang Dan, Chen He, Wang Chang, al et,2019.Study on mining method of the bauxite resources under coal seams[J].Nonferrous Metals (Mine Section),71(1):1-4. |
null | Jiang Y D, Meng L, Zhao Y X, al et,2012.The feasibility research on ascending mining under the condition of multi-disturbances[J].Procedia Environmental Sciences,12:758-764. |
null | Jiao Zhenhua, Tao Guangmei, Wang Hao, al et,2017.Overburden strata movement and fissure evolution in lower protective layer in Jincheng mining district[J].Journal of Mining and Safety Engineering,34(1):85-90. |
null | Ju Jinfeng, Xu Jialin, Zhu Weibing,2017.Storage capacity of underground reservoir in the Chinese western water-short coalfield[J].Journal of China Coal Society,42(2):381-387. |
null | Li Quansheng, Zhang Cun,2021.Damage conduction model of high intensity mining in western mining area based on conservation of mining space and its application[J].Journal of Mining and Safety Engineering,38(1):1-8. |
null | Li Y, Ren Y Q, Peng S S, al et,2021.Measurement of overburden failure zones in close-multiple coal seams mining[J].International Journal of Mining Science and Technology,31(1):43-50. |
null | Liu Jianlong, Yu Chao, Dong Jumei,2018.Application of the direct roof thickness detection technology in underground bauxite mines[J].Nonferrous Metals(Mine Section),70(6):105-109. |
null | Liu Tianquan,1995.Influence of mining activities on mine rockmass and control engineering[J].Journal of China Coal Society,(1):1-5. |
null | Mao Zhiyong, Lai Wenzhe, Huang Chunjuan,2020.Prediction of height of water flowing fractured zone based on APSO-LSSVM model[J].Journal of Liaoning Technical University(Natural Science Edition),39(1):34-40. |
null | Miao Xiexing, Ju Feng, Huang Yanli, al et,2015.New development and prospect of backfilling mining theory and technology[J].Journal of China University of Mining & Technology,44(3):391-399,429. |
null | Ning J G, Wang J, Tan Y L, al et,2020.Mechanical mechanism of overlying strata breaking and development of fractured zone during close-distance coal seam group mining[J].International Journal of Mining Science and Technology,30(2):207-215. |
null | Qu Qundi, Yao Qiangling, Li Xuehua,2010.Research on theory of space conversation for subsidence control in backfilling mining and its application[J].Journal of Hunan University of Science & Technology (Natural Science Edition),25(1):8-12. |
null | Shi Feng, Wang Hongtu, Shu Cai,2018.Similar simulation study on the influence of seam angle change on deformation law of overburden strata in coal seam mining[J].Journal of Chongqing University (Natural Science Edition),41(12):36-45. |
null | Shi Longqing, Xin Hengqi, Zhai Peihe, al et,2012.Calculating the height of water flowing fracture zone in deep mining[J].Journal of China University of Mining & Technology,41(1):37-41. |
null | State Bureau of Coal Industry,2017.Norm of Leaving Coal Pillar and Mining Coal Under Building,Water Body,Railway and Main Shaft & Roadway[M].Beijing:China Coal Industry Publishing House. |
null | Wang Jin’an, Han Xiangang, Pang Weidong, al et,2017.Photoelastic experimental study on the force chain structure and evolution in top coal and overlaying strata under fully mechanized top coal caving mining[J].Chinese Journal of Engineering,39(1):13-22. |
null | Wang Lianguo, Wang Zhansheng, Huang Jihui, al et,2012.Prediction on the height of water-flowing fractured zone for shallow seam covered with thin bedrock and thick windblown sands[J].Journal of Mining and Safety Engineering,29(5):607-612. |
null | Wang Xiaozhen, Xu Jialin, Han Hongkai, al et,2019.Stepped development characteristic of water flowing fracture height with variation of mining thickness[J].Journal of China Coal Society,44(12):3740-3749. |
null | Wang Xufeng, Zhang Dongsheng, Ma Liqiang, al et,2008.Numerical analysis on distributing features of under-river mining induced fissures in overburden rocks[J].Mining Research and Development,(5):61-63. |
null | Wang Zhiqiang, Li Pengfei, Wang Lei, al et,2013.Method of division and engineering use of “three band” in the stope again[J].Journal of China Coal Society,38(Supp.2):287-293. |
null | Xia Xiaogang,2012.Study on “Four-zone” Models of Mining Strata and Surface Movement[D].Xi’an:Xi’an University of Science and Technology. |
null | Xu Jialin, Wang Xiaozhen, Liu Wentao, al et,2009.Effects of primary key stratum location on height of water flowing fracture zone[J].Chinese Journal of Rock Mechanics and Engineering,28(2):380-385. |
null | Xu Z M, Sun Y J, Dong Q H, al et,2010.Predicting the height of water-flow fractured zone during coal mining under the Xiaolangdi Reservoir[J]. Mining Science and Technology (China),20(3):434-438. |
null | Xue Jiankun, Wang Hao, Zhao Chunhu, al et,2020.Prediction of the height of water-conducting fracture zone and water-filling model of roof aquifer in Jurassic coalfield in Ordos Basin[J].Journal of Mining and Safety Engineering,37(6):1222-1230. |
null | Yang Daming, Guo Wenbing, Zhao Gaobo, al et,2019.Height of water-conducting zone in longwall top-coal caving mining under thick alluvium and soft overburden[J].Journal of China Coal Society,44(11):3308-3316. |
null | Zhai Zhiwei, Meng Xiufeng, Wu Zhigao, al et,2020.Height determination of water flowing fractured zone based on borehole imaging observation[J].Coal Engineering,52(11):89-93. |
null | Zhang Enqiang, Zhang Jianzhong, Liu Jinhui,2011.Overburden strata movement law for ascending mining of coal mine[J].Journal of Xi’an University of Science and Technology,31(3):258-262. |
null | Zhang Hongzhen, Deng Kazhong, Gu Wei,2016.Distribution law of the old goaf residual cavity and void[J].Journal of Mining and Safety Engineering,33(5):893-897. |
null | Zhang Jun, Wang Jianpeng,2014.Similar simulation and practical research on the mining overburden roof strata “three-zones” height[J].Journal of Mining & Safety Engineering,31(2):249-254. |
null | Zhang Meng,2019.Theoretical Study on Overburden Control of High Efficiency Paste Backfilling Working Face[D].Xuzhou:China University of Mining and Technology. |
null | Zhang Peihe, Zhang Qi, Sun Xueyang, al et,2019.Similar material simulation experimental study on overburden movement caused water conducted zone height in coal mining[J].Coal Geology of China,31(10):49-52,72. |
null | Zhang Qinghe, Yang Ke, Yuan Liang, al et,2019.Experimental study on deformation and collapse characteristics of two stope belts based on continuous displacement monitoring[J].Advanced Engineering Sciences,51(3):36-42. |
null | Zhang Yun, Cao Shenggen, Lai Xingping, al et,2019.Study on the development mechanism and control of water-conducting fractures in short-wall block backfill mining[J].Journal of Mining and Safety Engineering,36(6):1086-1092. |
null | Zhang Zhaowei,2015.Research on Moving Rules of Surrouding Rock for Backfill Mining with Superhigh-water Material in Medium-thickness Seam[D].Xuzhou:China University of Mining and Technology. |
null | Zuo Jianping, Sun Yunjiang, Qian Minggao,2017.Movement mechanism and analogous hyperbola model of overlying strata with thick alluvium[J].Journal of China Coal Society,42(6):1372-1379. |
null | 范立民,马雄德,吴群英,等,2020.保水采煤技术规范的技术要点分析[J].煤炭科学技术,48(9):81-87. |
null | 冯超,代革联,2019.采动条件下导水裂隙带发育高度预测[J].煤炭技术,38(12):94-98. |
null | 高泽明,2021.采空区上覆岩层导水裂隙发育高度研究[J].煤炭技术,40(1):78-81. |
null | 国家煤炭工业局,2017.建筑物、水体、铁路及主要井巷煤柱留设与压煤开采规范[M].北京:煤炭工业出版社. |
null | 郝庆旺,1988.采动岩体的空隙扩散模型与空源作用分析[J].中国矿业学院学报,(2):33-39. |
null | 贺化平,2019.采空区上覆岩层“三带”划分理论计算与数值模拟结果对比[J].煤炭技术,38(6):51-54. |
null | 侯公羽,胡涛,李子祥,等,2020.基于BOFDA的覆岩采动“两带”变形表征研究[J].采矿与安全工程学报,37(2):224-237. |
null | 黄丹,陈何,王昌,等,2019.煤系地层覆盖下铝土矿采矿方法研究[J].有色金属(矿山部分),71(1):1-4. |
null | 焦振华,陶广美,王浩,等,2017.晋城矿区下保护层开采覆岩运移及裂隙演化规律研究[J].采矿与安全工程学报,34(1):85-90. |
null | 鞠金峰,许家林,朱卫兵,2017.西部缺水矿区地下水库保水的库容研究[J].煤炭学报,42(2):381-387. |
null | 李全生,张村,2021.基于采动空间守恒的西部矿区高强度开采损伤传导模型及应用[J].采矿与安全工程学报,38(1):1-8. |
null | 刘建龙,余超,董菊美,2018.顶板厚度探测技术在地下铝土矿的应用研究[J].有色金属(矿山部分),70(6):105-109. |
null | 刘天泉,1995.矿山岩体采动影响与控制工程学及其应用[J].煤炭学报,(1):1-5. |
null | 毛志勇,赖文哲,黄春娟,2020.基于APSO-LSSVM模型的导水裂隙带高度预测[J].辽宁工程技术大学学报(自然科学版),39(1):34-40. |
null | 缪协兴,巨峰,黄艳利,等,2015.充填采煤理论与技术的新进展及展望[J].中国矿业大学学报,44(3):391-399,429. |
null | 瞿群迪,姚强岭,李学华,2010.充填开采控制地表沉陷的空隙量守恒理论及应用研究[J].湖南科技大学学报(自然科学版),25(1):8-12. |
null | 施峰,王宏图,舒才,2018.煤层倾角变化对采动覆岩变形规律影响的相似模拟试验研究[J].重庆大学学报,41(12):36-45. |
null | 施龙青,辛恒奇,翟培合,等,2012.大采深条件下导水裂隙带高度计算研究[J].中国矿业大学学报,41(1):37-41. |
null | 王金安,韩现刚,庞伟东,等,2017.综放开采顶煤与覆岩力链结构及演化光弹试验研究[J].工程科学学报,39(1):13-22. |
null | 王连国,王占盛,黄继辉,等,2012.薄基岩厚风积沙浅埋煤层导水裂隙带高度预计[J].采矿与安全工程学报,29(5):607-612. |
null | 王晓振,许家林,韩红凯,等,2019.顶板导水裂隙高度随采厚的台阶式发育特征[J].煤炭学报,44(12):3740-3749. |
null | 王旭锋,张东升,马立强,等,2008.河下采煤覆岩采动裂隙分布特征的数值分析[J].矿业研究与开发,(5):61-63. |
null | 王志强,李鹏飞,王磊,等,2013.再论采场“三带”的划分方法及工程应用[J].煤炭学报,38(增2):287-293. |
null | 夏小刚,2012.采动岩层与地表移动的“四带”模型研究[D].西安:西安科技大学. |
null | 许家林,王晓振,刘文涛,等,2009.覆岩主关键层位置对导水裂隙带高度的影响[J].岩石力学与工程学报,28(2):380-385. |
null | 薛建坤,王皓,赵春虎,等,2020.鄂尔多斯盆地侏罗系煤田导水裂隙带高度预测及顶板充水模式[J].采矿与安全工程学报,37(6):1222-1230. |
null | 杨达明,郭文兵,赵高博,等,2019.厚松散层软弱覆岩下综放开采导水裂隙带发育高度[J].煤炭学报,44(11):3308-3316. |
null | 翟志伟,孟秀峰,武志高,等,2020.基于钻孔成像观测的导水裂隙带高度确定方法研究[J].煤炭工程,52(11):89-93. |
null | 张恩强,张建忠,刘金辉,2011.煤矿上行开采覆岩运动规律研究[J].西安科技大学学报,31(3):258-262. |
null | 张宏贞,邓喀中,顾伟,2016.老采空区残留空洞空隙分布规律研究[J].采矿与安全工程学报,33(5):893-897. |
null | 张军,王建鹏,2014.采动覆岩“三带”高度相似模拟及实证研究[J].采矿与安全工程学报,31(2):249-254. |
null | 张猛,2019.高效膏体充填工作面覆岩控制的理论研究[D].徐州:中国矿业大学. |
null | 张培河,张齐,孙学阳,等,2019.煤炭开采覆岩移动导水裂隙带发育高度相似材料模拟实验研究[J].中国煤炭地质,31(10):49-52,72. |
null | 张庆贺,杨科,袁亮,等,2019.基于位移连续监测的采场两带变形垮落特性试验研究[J].工程科学与技术,51(3):36-42. |
null | 张云,曹胜根,来兴平,等,2019.短壁块段式充填采煤覆岩导水裂隙发育机理及控制研究[J].采矿与安全工程学报,36(6):1086-1092. |
null | 张兆威,2015.中厚煤层超高水材料充填开采围岩活动规律研究[D].徐州:中国矿业大学. |
null | 左建平,孙运江,钱鸣高,2017.厚松散层覆岩移动机理及“类双曲线”模型[J].煤炭学报,42(6):1372-1379. |
/
〈 | 〉 |