[an error occurred while processing this directive] [an error occurred while processing this directive] [an error occurred while processing this directive]
[an error occurred while processing this directive]
采选技术与矿山管理

含水率对重塑红黏土反复抗剪强度影响试验研究

  • 林斌 ,
  • 田竹华 ,
  • 陈雨漫
展开
  • 安徽理工大学土木建筑学院,安徽 淮南 232001

林斌(1968-),男,安徽合肥人,教授,从事岩土与地下工程及冻土力学专业的教学与科研工作。

收稿日期: 2020-12-06

  修回日期: 2021-05-12

  网络出版日期: 2021-12-17

基金资助

安徽省自然科学基金项目“高速铁路X形桩桩网复合地基动态荷载传递机制和变形特性研究”(2008085ME143)

安徽理工大学研究生创新基金项目“红黏土地基力学特性及数值分析研究”(2020cx2027)

Experimental Study on Effect of Water Content on Repeated Shear Strength of Remolded Red Clay

  • Bin LIN ,
  • Zhuhua TIAN ,
  • Yuman CHEN
Expand
  • School of Civil Engineering and Architecture,Anhui University of Science and Technology,Huainan 232001,Anhui,China

Received date: 2020-12-06

  Revised date: 2021-05-12

  Online published: 2021-12-17

本文亮点

红黏土性质的稳定与安全生产息息相关,抗剪强度作为红黏土强度特性之一,与红黏土的稳定性密切相关。为探究含水率对红黏土反复抗剪强度的影响,以山西长治地区的重塑红黏土为研究对象进行反复直剪试验。试验结果表明:无竖向压力时,随着剪切次数的增加,抗剪强度减小并趋于稳定值,第2次剪切达到抗剪强度时对应的剪切位移小于第1次剪切时的位移,稳定剪切时对应的剪切位移大于第1次剪切时的位移;抗剪强度与含水率呈负线性关系,且抗剪强度为土体的真黏聚力,随着含水率的增加先增大后减小。当施加竖向压力后,抗剪强度随着含水率的增加而减小;利用抗剪强度表达式拟合得到内摩擦角和黏聚力,其中黏聚力随着含水率的增加先减小后增大;通过真黏聚力计算得出新的内摩擦角,2种分析方法得出的内摩擦角基本接近且均随着含水率的增加而减小,减小幅度逐渐增大。定义黏聚力差异指数比来研究真黏聚力与黏聚力之间的差异,分析得到黏聚力与真黏聚力的差异指数比在0.75~9.96之间,当含水率为19.5%时黏聚力差异指数比达到最小。利用所建立的相关经验公式,能够为红黏土地区矿山岩土勘察、设计和开挖过程中土性参数的合理选取提供一定参考。

本文引用格式

林斌 , 田竹华 , 陈雨漫 . 含水率对重塑红黏土反复抗剪强度影响试验研究[J]. 黄金科学技术, 2021 , 29(5) : 680 -689 . DOI: 10.11872/j.issn.1005-2518.2021.05.210

Highlights

As a special soil,red clay is widely distributed in some areas of China.Due to the engineering problems such as slope cracking,subgrade subsidence and insufficient foundation bearing capacity,the strength characteristics of red clay is one of the main problems concerned by engineers,and the stability of red clay is closely related to safety production.In order to explore the influence of water content on the repeated shear strength of red clay,the repeated direct shear test was carried out on remolded red clay in Changzhi area of Shanxi Province.Because the water content of undisturbed soil in this area is between 17.0% and 23.7%,and the plastic limit water content is 20.34%,considering the law of test results and the influence of plastic limit,soil samples with five water contents of 15.0%,18.0%,19.5%,21.0% and 24.0% were prepared for test.The test results show that when no vertical pressure is applied, repeated direct shear is conducted on the sample,and the test is stopped when the sample’s strength gradually stabilizes.When there is no vertical pressure,the shear strength decreases and tends to be stable with the increase of shear times.The displacement of secondary shear to shear strength is less than that of the first shear,and the stable shear displacement is greater than that of the first shear.In the process of shearing,the shear strength has a negative linear relationship with the water content.When there is no vertical pressure,the shear strength is equal to the cohesion,and the shear strength is defined as the true cohesion.The vertical pressure of 50,100,150 and 200 kPa was applied to carry out the direct shear test.When there is vertical pressure,the shear strength decreases with the increase of water content.The internal friction angle and cohesion of shear strength index were obtained by physical expression fitting,and compared with the internal friction angle obtained by true cohesion and no vertical pressure.The internal friction angle obtained by the two kinds of analysis is basically close,and decreases with the increase of water content,and the decreasing range gradually increases.Due to the dilatancy effect in the test process,the true cohesion first increases and then decreases with the increase of water content,and the cohesion first decreases and then increases with the increase of water content.The contrast analysis shows that the difference of cohesion is obvious,so the difference index ratio of cohesion and true cohesion with vertical pressure is 0.75~9.96,and the change rule of the difference index ratio of cohesion is the same as the fitting cohesion,and the difference index ratio reaches the minimum when the water content is 19.5%.The empirical formula can provide some reference for the reasonable selection of soil parameters in the process of geotechnical investigation,design and excavation of mines in red clay area.

[an error occurred while processing this directive]

IMDEX通过ioGAS和aiSIRIS的集成解决采矿价值链的痛点

IMDEX表示,该公司已经将两项“黄金标准”数据分析技术相结合,形成了一个非常高效的工作流程,从该流程获得的结果可以应用于从勘探到矿石开采的整个采矿价值链。

该公司表示,将地球科学分析领域的领先技术IMDEX ioGAS™与光谱矿物学解释领域的领先技术IMDEX aiSIRIS™相结合,提供了一个功能强大的解决方案,用于将光谱矿物学数据与地球化学及其他地质学数据集相结合,以对这些数据进行综合分析。自从2020年收购AusSpec公司并随同收购aiSIRIS技术以来,IMDEX一直在致力于解决这两项技术的互操作性问题。

在完成收购后,AusSpec的创始人兼经理Sasha Pontual博士加盟了IMDEX,担任该公司的自动化矿物分析业务全球产品经理。据IMDEX称,aiSIRIS是全球第一款商业化应用的人工智能光谱矿物学数据解释系统,是基于手持式红外光谱仪的自动化光谱矿物学分析领域的领先技术。

正在与Pontual博士共同研究aiSIRIS与ioGAS整合的IMDEX技术产品支持专家Luisa Ashworth博士表示,在开发aiSIRIS之前,光谱矿物学分析仅限于使用老式软件的光谱专家应用,导致分析周期长以及分析结果常常不完整和不准确。Ashworth表示,“aiSIRIS的输出结果实现了标准化,这在光谱矿物学研究领域的同类技术中走在了最前列。该系统通过200多万个真实光谱数据进行训练,每一个数据经过了世界级光谱专家的详细解释。也就是说,应用于所有常见的地质系统时,aiSIRIS的应用具有可靠性。aiSIRIS能给出专家级的解释,但是与光谱专家相比,aiSIRIS的解释速度更快且更准确。显然,该技术已经处于行业的前沿。我们正在进一步开发,将其推向更高的水平。”

IMDEX表示,在ioGAS系统中已经集成了多个工具,可用于直接查询光谱矿物学数据,从而进一步优化数据分析。这将影响矿山的多项工作,包括矿山规划、选矿和生产。

ioGAS的产品经理Putra Sadikin表示,“这项集成建立了一个非常高效的数据分析工作流程。该流程提供了岩石知识的详细分析,解决了多个关键的“痛点”。aiSIRIS利用一个基于云的解决方案实现光谱数据解释的自动化,通过这种方式解决了第一个痛点。当你将自动解释的矿物学数据输入ioGAS时,该系统解决了第二个痛点,即如何便捷地从那些数据中发现规律以及从矿物学信息中获得更好的价值?ioGAS增加了一个解释维度,允许利用一系列其他IMDEX工具解释从aiSIRIS获得的矿物学自动化解释数据。”

脚注

http://www.goldsci.ac.cn/article/2021/1005-2518/1005-2518-2021-29-5-680.shtml

Chen Hongbin Chen Xuejun Qi Yunlai al et2019.Influence of dry density and moisture content on shear strength parameters of remolded red clay soil[J].Journal of Engineering Geology27(5):1035-1040.

Chen Jiayu Liu Zhikui2019.Strength change mechanism of undisturbed red clay and remolded red clay[J].Journal of Henan University of Science and Technology(Natural Science)40(3):53-59.

Chen Zhenghan Qin Bing2012.On stress state variables of unsaturated soils[J].Rock and Soil Mechanics33 (1):1-11.

Cheng Yun Wei Changfu Niu Geng2017.The effect of dry-wet cycle on the shear strength of red clay in karst area[J].Rock and Soil Mechanics38(Supp.2):191-196.

Hu Xin Hong Baoning Du Qiang al et2009.Influence of water contents on shear strength of coal-bearing soil [J].Rock and Soil Mechanics30(8):2292-2294.

Huang Kun Wan Junwei Chen Gang al et2012.Testing study of relationship between water content and shear strength of unsaturated soil[J].Rock and Soil Mechanics33(9):2600-2604.

Li Chunhong Kong Gangqiang Liu Hanlong2019.Study of temperature-controlled pile-red clay interface tests and stress-strain relationship[J].China Civil Engineering Journal52(Supp.2):89-94,101.

Li Guangxin2004.Advanced Soil Mechanics[M].Beijing:Tsinghua University Press.

Li Huaixin Lin Bin Chen Shiwei al et2020.Study on softening model and strength of red clay at different water content[J].Gold Science and Technology28(3):442-449.

Li Xiaoli Zhai Tao Zhang Qiang2015.Experiment on mechanical properties of Pisha-sandstone at recurrent shear[J].Transactions of the Chinese Society Agricultrual Engineering31(21):154-159.

Haibo Zeng Zhaotian Yin Guoqiang al et2012.Analysis of mineral composition of red clay in Guangxi [J].Journal of Engineering Geology20(5):651-656.

Ly H B Pham B T2020.Prediction of shear strength of soil using direct shear test and support vector machine model[J].The Open Construction and Building Technology Journal14(1):41-50.

Mu Rui Guo Jianqiang Huang Zhihong al et2018.Effect of uneven moisture content on shear strength of red clay[J].People’s Pearl River39(6):63-66.

Nanjing Water Conservancy Research Institute,1999. Standard of soil test methods:GB/T 50123[S].Beijing:China Planning Press.

Uyeturk C E Huvaj N2021.Constant water content direct shear testing of compacted residual soils[J]. Bulletin of Engineering Geology and the Environment,80:691-703.

Wang Haixiang2018.Research on engineering properties of lateritic clay in Hezhou[J].Highway63(1):13-19.

Xia Caichu Song Yinglong Tang Zhicheng al et2012.Shear strength and morphology characteristic evolution of joint surface under cyclic loads[J].Journal of Central South University(Science and Technology)43(9):3589-3594.

Xue Ke Wen Zhi Ma Xiaohan al et2019. Effect of freezing on microstructure of Qinghai Tibet red clay and Lanzhou silt[J].Glacial Frozen Soil41(5):1122-1129.

Zhang Kunyong Xu Na Chen Shu al et2020.Experimental study on fully softened shear strength of expansive soli[J].Chinese Journal of Geotechnical Engineering42(11):1988-1995.

Zhang Wenshu Zhang Xifa1991.Theoretical basis and method of soil shear strength index statistics [J].Hydrogeology ang Engineering Geology,(2):53-55.

Zhang Zelin Wu Shuren Tang Huiming al et2017.Dynamic characteristics and microcosmic damage effect of loess and mudstone[J].Chinese Journal of Rock Mechanics and Engineering36(5):1256-1268.

陈鸿宾,陈学军,齐运来,等,2019.干密度与含水率对重塑红黏土抗剪强度参数影响研究[J].工程地质学报27(5):1035-1040.

陈佳雨,刘之葵,2019.原状与重塑红黏土强度变化机理[J].河南科技大学学报(自然科学版)40(3):53-59.

陈正汉,秦冰,2012.非饱和土的应力状态变量研究[J].岩土力学33(1):1-11.

程允,韦昌富,牛庚,2017.干湿循环作用对岩溶区红黏土剪切强度的影响[J].岩土力学38(增2):191-196.

胡昕,洪宝宁,杜强,等,2009.含水率对煤系土抗剪强度的影响[J].岩土力学30(8):2292-2294.

黄琨,万军伟,陈刚,等,2012.非饱和土的抗剪强度与含水率关系的试验研究[J].岩土力学33(9):2600-2604.

李春红,孔纲强,刘汉龙,等,2019.桩—红黏土接触面温控测试及应力—应变关系研究[J].土木工程学报52(增2):89-94,101.

李广信,2004.高等土力学[M].北京:清华大学出版社.

李怀鑫,林斌,陈士威,等,2020.不同含水率下红黏土软化模型及强度试验研究[J].黄金科学技术28(3):442-449.

李晓丽,翟涛,张强,2015.反复剪切作用下砒砂岩土壤力学性能试验[J].农业工程学报31(21):154-159.

吕海波,曾召田,尹国强,等,2012.广西红黏土矿物成分分析[J].工程地质学报20(5):651-656.

穆锐,郭建强,黄质宏,等,2018.不均匀含水率对红黏土抗剪强度的影响研究[J].人民珠江,39(6):63-66:

南京水利科学研究院,1999. 土工试验方法标准:GB/T 50123[S].北京:中国计划出版社.

王海湘,2018.广西贺州红黏土的工程性质研究[J].公路63(1):13-19.

夏才初,宋英龙,唐志成,等,2012.反复直剪试验节理强度与粗糙度变化的研究[J].中南大学学报(自然科学版)43(9):3589-3594.

薛珂,温智,马小涵,等,2019.冻结作用对青藏红黏土及兰州粉土微观结构的影响分析[J].冰川冻土41(5):1122-1129.

张坤勇,徐娜,陈恕,等,2020.膨胀土完全软化强度指标试验研究[J].岩土工程学报42(11):1988-1995.

张文殊,张喜发,1991.土的抗剪强度指标统计的理论基础及方法[J].水文地质工程地质,(2):53-55.

张泽林,吴树仁,唐辉明,等,2017.黄土和泥岩的动力学特性及微观损伤效应[J].岩石力学与工程学报36(5):1256-1268.

文章导航

/

[an error occurred while processing this directive]