img

QQ群聊

img

官方微信

  • CN 62-1112/TF 
  • ISSN 1005-2518 
  • 创刊于1988年
高级检索
采选技术与矿山管理

矿岩开挖松动区厚度预测及非爆机械化开采判据

  • 景岳 ,
  • 王少锋 ,
  • 鲁金涛
展开
  • 1.中南大学资源与安全工程学院,湖南 长沙 410083
    2.应急管理部研究中心,北京 100013
景岳(1995-),男,山东济南人,硕士研究生,从事深部硬岩破裂方面的研究工作。195511040@csu.edu.cn

收稿日期: 2020-12-29

  修回日期: 2021-04-08

  网络出版日期: 2021-10-08

基金资助

国家自然科学基金项目“深部高应力下镐形截齿破岩特性及诱导调控机理”(51904333)

Thickness Prediction of the Excavation Damage Zone and Non-explosive Mechanized Mining Criterion

  • Yue JING ,
  • Shaofeng WANG ,
  • Jintao LU
Expand
  • 1.School of Resource and Safety Engineering,Central South University,Changsha 410083,Hunan,China
    2.Research Center of the Ministry of Emergency Management,Beijing 100013,China

Received date: 2020-12-29

  Revised date: 2021-04-08

  Online published: 2021-10-08

摘要

非爆机械化开采的可行性与待截割矿体周围松动区的厚度之间有着密切联系,研究待截割矿体周围松动区厚度对于合理进行机械化开采具有重要意义。综合考虑松动区厚度的成因及特点,选取了单轴抗压强度、岩体质量等级、埋深、岩石容重和开挖跨度5个影响因素作为指标。首先利用从多个矿山现场收集的69组数据,建立了松动区厚度的回归预测模型,并通过熵权法评价5个影响因素对于松动区厚度的影响权重;然后根据所得的松动区厚度预测模型对开磷马路坪矿开采现场松动区厚度进行预测,并依此建立了基于矿岩开挖松动区厚度的非爆机械化开采判据;最后对现阶段开磷马路坪矿非爆机械化开采的可行性进行评价。结果表明:本研究得到的基于矿岩开挖松动区厚度的非爆机械化开采判据,可以较好地评判开磷马路坪矿非爆机械化开采的可行性和合理性。

本文引用格式

景岳 , 王少锋 , 鲁金涛 . 矿岩开挖松动区厚度预测及非爆机械化开采判据[J]. 黄金科学技术, 2021 , 29(4) : 525 -534 . DOI: 10.11872/j.issn.1005-2518.2021.04.010

Abstract

Deep mining has gradually become a new trend in underground mining,and the non-explosive mechanized mining method,as one of the alternatives to conventional drilling and blasting excavation,has shown great advantages in rock-breaking efficiency and safety.Non-explosive mechanized mining of hard rock mines is a technical problem that needs to be solved to realize continuous mining and safe,efficient and green development of deep resources in hard rock mines.In the roadway excavation,the initial stress state of the surrounding rock is destroyed to form a secondary stress field resulting in the phenomenon of stress concentration,which will form a “crushing zone” around the surrounding rock,called the excavation damage zone (EDZ).The feasibility of non-explosive mechanized mining is closely related to the thickness of the EDZ around the ore to be cut.The existing research shows that the thickness of the EDZ is mainly affected by rock properties,ground stress,geological conditions and excavation parameters and other factors.So in this paper,the characteristics of the EDZ thickness were considered comprehensively,and five influencing factors of uniaxial compression strength,rock mass grade,burial depth,rock bulk and excavation span were selected.Through multiple regression analysis,using 69 sets of data collected at multiple mine sites,a functional relationship between the thickness of the EDZ and five influencing factors was established,so as to obtain the prediction model of the thickness of the EDZ.The results were obtained by comparing the measured data of the EDZ thickness with the prediction values obtained from the EDZ thickness prediction model.The high determination coefficient and the low root mean squared error show that the established EDZ thickness prediction model and the non-explosive mechanized mining criterion have good reliability.In addition,the weights of the five influencing factors on the thickness of the EDZ were evaluated by the entropy weight method and ranked in order.The results show that the uniaxial compressive strength has the largest influence on the thickness of the EDZ,the rock mass grade has the smallest influence on the thickness of the EDZ,and the burial depth,rock bulk density,and excavation span have increasing influence on the thickness of the EDZ.The regression prediction model can better predict the thickness of the EDZ at Kailin Maluping mine,and the predicted value meets the requirements of non-explosive mechanized mining,verifying the feasibility and rationality of non-explosive mechanized mining.

参考文献

null Alcolea R A,Kuhlmann U,Marschall P,2019.3D modelling of the excavation damaged zone using a Marked Point Process technique[J].Geomechanics for Energy and the Environment,17:29-46.
null Farahmand K,Diederichs M S,2020.Calibration of coupled hydro-mechanical properties of grain-based model for simulating fracture process and associated pore pressure evolution in excavation damage zone around deep tunnels[J].Journal of Rock Mechanics and Geotechnical Engineering,13(1):60-83.
null Gao C L,Zhou Z Q,Li Z H,al et,2020.Peridynamics simulation of surrounding rock damage characteristics during tunnel excavation[J].Tunnelling and Underground Space Technology,97:103289.
null Gao Wei,Zheng Yingren,2002.Evolutionary neural network model on predication of loosen zone around roadway[J].Chinese Journal of Rock Mechanics and Engineering,(5):658-661.
null Han H Y,Fukuda D,Liu H Y,al et,2020.Combined finite-discrete element modelling of rock fracture and fragmentation induced by contour blasting during tunnelling with high horizontal in-situ stress[J].International Journal of Rock Mechanics and Mining Sciences,127:104214.
null Hu Jun,Wang Kaikai,Xia Zhiguo,2014.Support vector machine (SVM) prediction of roadway surrounding rock loose circle thickness optimized by layered fish[J].Metal Mine,43(11):31-34.
null Huang Feng,Zhu Hehua,Li Qiushi,al et,2016.Field detection and theoretic analysis of loose circle of rock mass surrounding tunnel[J].Rock and Soil Mechanics,37(Supp.1):145-150.
null Jiang Quan,Feng Xiating,Su Guoshao,al et,2007.Intelligent back analysis of rock mass parameters for large underground caverns under high earth stress based on EDZ and increment displacement[J].Chinese Journal of Rock Mechanics and Engineering,(Supp.1):2654-2662.
null Jing Hongwen,Fu Guobin,Guo Zhihong,1999.Measurement and analysis of influential factors of broken zone of deep roadways and study on its control technique[J].Chinese Journal of Rock Mechanics and Engineering,(1):3-5.
null Li Weili,Wang Lei,Chang Jucai,2011.Calculation and site measurement of surrounding rock released circle base on Hoek-Brown criterion[J].Coal Engineering,(2):97-99.
null Liu Gang,Xiao Yongzhuo,Zhu Junfu,al et,2021.Overview and prospect on theoretical calculation method of broken rock zone[J].Journal of China Coal Society,46(1):46-56.
null Ma Rongtian,2006.Experimental study on the thickness of surrounding rock loose zone of roadway[J].Railway Engineering,(11):76-80.
null Ma Wentao,2007.A predicative study of loosening zones around roadways with least square support vector machines method with optimized parameters[J].Rock and Soil Mechanics,28(Supp.1):460-464.
null Martini C D,Read R S,Martino J B,1997.Observations of brittle failure around a circular test tunnel[J].International Journal of Rock Mechanics and Mining Sciences,34(7):1065-1073.
null Martino J B,Chandler N A,2004.Excavation-induced damage studies at the Underground Research Laboratory[J].International Journal of Rock Mechanics and Mining Sciences,41(8):1413-1426.
null Meng Qingbin,Yanqing Men,Yang Yiming,al et,2010.Roadway surrounding rock loose circle supporting theory and testing technology[J].China Mine Engineering,39(3):47-51.
null Read R S,2004.20 years of excavation response studies at AECL’s Underground Research Laboratory[J].International Journal of Rock Mechanics and Mining Sciences,41(8):1251-1275.
null Sun Xikui,Chang Qingliang,Shi Xianyuan,al et,2016.Thickness measurement and distribution law of loose rings of surrounding rock in large cross section semicircle arch seam gateway[J].Coal Science and Technology,44(11):1-6.
null Walton G,Lato M,Anschütz H,al et,2015.Non-invasive detection of fractures,fracture zones,and rock damage in a hard rock excavation—Experience from the ?sp? Hard Rock Laboratory in Sweden[J].Engineering Geology,196:210-221.
null Wang S F,Li X B,Yao J R,al et,2019.Experimental investigation of rock breakage by a conical pick and its application to non-explosive mechanized mining in deep hard rock[J].International Journal of Rock Mechanics and Mining Sciences,122:104063.
null Wu Qingxing,Chen Jie,Chen Suxia,2012.Sensibility analysis of underground excavation stability based on the Hoek-Brown strength criterion[J].Science Technology and Engineering,12(21):5371-5373,5378.
null Wu Tao,Dai Jun,Du Meili,al et,2015.Surrounding rock loosing circle test based on acoustic test technology[J].Safety in Coal Mines,46(1):169-172.
null Xu Guo’an,Jing Hongwen,2005.Study on intelligent prediction of broken rock zone thickness of coal mine roadways[J].Journal of China University of Mining & Technology,(2):23-26.
null Zhao Guoyan,Liang Weizhang,Wang Shaofeng,al et,2016.Prediction model for extent of excavation damaged zone around roadway based on dimensional analysis[J].Rock and Soil Mechanics,37(Supp.2):273-278,300.
null 高玮,郑颖人,2002.巷道围岩松动圈预测的进化神经网络法[J].岩石力学与工程学报,(5):658-661.
null 胡军,王凯凯,夏治国,2014.分层鱼群优化支持向量机预测巷道围岩松动圈厚度[J].金属矿山,43(11):31-34.
null 黄锋,朱合华,李秋实,等,2016.隧道围岩松动圈的现场测试与理论分析[J].岩土力学,37(增1):145-150.
null 江权,冯夏庭,苏国韶,等,2007.基于松动圈—位移增量监测信息的高地应力下洞室群岩体力学参数的智能反分析[J].岩石力学与工程学报,(增1):2654-2662.
null 靖洪文,付国彬,郭志宏,1999.深井巷道围岩松动圈影响因素实测分析及控制技术研究[J].岩石力学与工程学报,(1):3-5.
null 李伟利,王磊,常聚才,2011.基于Hoek-Brown准则的围岩松动圈计算及现场测试[J].煤炭工程,(2):97-99.
null 刘刚,肖勇卓,朱俊福,等,2021.围岩松动圈理论计算方法的评述与展望[J].煤炭学报,46(1):46-56.
null 马荣田,2006.巷道围岩松动区厚度的试验研究[J].铁道建筑,(11):76-80.
null 马文涛,2007.参数优化LSSVM的巷道围岩松动圈预测研究[J].岩土力学,28(增1):460-464.
null 孟庆彬,门燕青,杨以明,等,2010.巷道围岩松动圈支护理论及测试技术[J].中国矿山工程,39(3):47-51.
null 孙希奎,常庆粮,施现院,等,2016.大断面半圆拱煤巷围岩松动圈厚度测定及分布规律[J].煤炭科学技术,44(11):1-6.
null 吴清星,陈洁,陈素侠,2012.基于Hoek-Brown强度准则的洞室稳定影响分析[J].科学技术与工程,12(21):5371-5373,5378.
null 吴涛,戴俊,杜美利,等,2015.基于声波法测试技术的巷道围岩松动圈测定[J].煤矿安全,46(1):169-172.
null 许国安,靖洪文,2005.煤矿巷道围岩松动圈智能预测研究[J].中国矿业大学学报,(2):23-26.
null 赵国彦,梁伟章,王少锋,等,2016.基于量纲分析的巷道围岩松动圈预测模型[J].岩土力学,37(增2):273-278,300.
文章导航

/