[an error occurred while processing this directive] [an error occurred while processing this directive] [an error occurred while processing this directive]
[an error occurred while processing this directive]
采选技术与矿山管理

应力—渗流耦合作用下损伤岩石渗流特性

  • 胡建华 ,
  • 董喆喆 ,
  • 马少维 ,
  • 秦亚光 ,
  • 徐晓 ,
  • 代转
展开
  • 中南大学资源与安全工程学院,湖南 长沙 410083
马少维(1987-),男,山西太原人,博士研究生,从事采矿技术和岩石力学研究工作。

胡建华(1975-),男,湖南衡南人,教授,从事高效安全采矿技术与工程稳定性研究工作。

收稿日期: 2020-11-29

  修回日期: 2021-03-08

  网络出版日期: 2021-07-14

基金资助

国家自然科学基金项目“深部采动下地质结构体跨尺度时变力学行为试验及机理”(41672298)

国家“十三五”重点研发计划课题“深部大矿段多采场时空协同采矿理论与技术”(2017YFC0602901)

Seepage Characteristics of Damaged Rock Under Stress-Seepage Coupling

  • Jianhua HU ,
  • Zhezhe DONG ,
  • Shaowei MA ,
  • Yaguang QIN ,
  • Xiao XU ,
  • Zhuan Dai
Expand
  • School of Resources and Safety Engineering,Central South University,Changsha 410083,Hunan,China

Received date: 2020-11-29

  Revised date: 2021-03-08

  Online published: 2021-07-14

本文亮点

地下矿产资源开采过程中,频繁的应力扰动会对深部硬岩造成一定的损伤。硬岩内部孔隙和裂隙在高地应力和高渗透压的状态下迅速扩展贯通,严重威胁岩体工程的安全和稳定性。针对损伤花岗岩开展了一系列应力—渗流耦合试验,结合CT扫描,考虑渗透压、围压和损伤程度等因素的影响,综合分析了损伤岩石在应力—渗流耦合作用下的力学和渗流特性。试验结果表明:随着损伤程度的增加,岩样孔隙及裂隙体积呈现出从平缓增加、稳步增加到急剧增加的变化趋势;在围压相同的情况下,岩样的峰值强度随着渗透压的增加呈线性减小,渗透压对损伤花岗岩的强度具有明显的弱化效应,且弱化程度与围压无关;损伤程度越大,裂隙发育程度越高,渗透率越大,同时,孔隙及裂隙的发育程度可用于表征渗透率的大小。

本文引用格式

胡建华 , 董喆喆 , 马少维 , 秦亚光 , 徐晓 , 代转 . 应力—渗流耦合作用下损伤岩石渗流特性[J]. 黄金科学技术, 2021 , 29(3) : 355 -363 . DOI: 10.11872/j.issn.1005-2518.2021.03.204

Highlights

During the mining of underground mineral resources,the deep hard rock will be damaged by the frequent stress disturbances.Its internal pores and fissures will rapidly expand and penetrate under the state of high ground stress and high osmotic pressure,which seriously threatens the safety and stability of rock mass engineering.The damage degree D is defined by the ratio of axial stress σ to compressive strength σ c.Pre-damaged rock samples with different damage degrees (0%,25%,40%,50%,65%,75%,100%) were prepared by uniaxial compression test.A series of stress-seepage coupling tests were carried out for 75% damaged granite.Combined with CT scanning,considering the influence of seepage pressure,confining pressure and damage degree,the mechanical and seepage characteristics of damaged rock under stress-seepage coupling was comprehensive analyzed.The research results show that with the increase of damage degree,the number and size of pore and fracture of rock sample increase significantly,and changes of the volume of pore and fracture of rock sample shows a trend of increase gently and increase steadily to increase sharply.Under the same confining pressure,the peak strength of the rock sample shows a linear decrease with the increase of osmotic pressure,the osmotic pressure has a significant weakening effect on the strength of damaged granite,and the degree of weakening is independent of the confining pressure.The permeability of pre-damaged rock samples is closely related to the volume of pores and fractures.The variation trend of permeability with damage percentage confirms the evolution law of pores in different development stages.The greater the degree of damage,the higher the degree of fracture development and the greater the permeability.At the same time,the permeability can be characterized by the degree of development of pores and fractures.With the same degree of fracture development,the greater the confining pressure,the smaller the permeability.

[an error occurred while processing this directive]

俄罗斯极地黄金公司估算其黄金储备约为2 950 t,为全球最大

据2021年5月21日报道,俄罗斯最大的黄金生产商极地黄金公司宣布了其根据JORC标准评估的资源储量结果。截至2020年12月31日,俄罗斯极地黄金公司探明的和控制的储量增加了71%,达到1.04亿盎司(约2 948.35 t)黄金,原因是大型金矿床苏霍伊洛克(Sukhoi Log)的储量纳入其中。

俄罗斯极地黄金公司的首席执行官在一份声明中表示,根据最新的资源储量评估结果,可以确认该公司目前拥有全球最大的黄金储备基地。

该公司计划于2022年对西伯利亚的苏霍伊洛克项目做出最终投资决定。截至2020年12月底,该公司测算控制的和推断的矿产资源量为2.04亿盎司(约5 783.30 t)黄金;而在2019年12月31日这一数字为1.88亿盎司(约5 329.71 t)。资源量增加的原因是在拟定新的采矿计划和资源模式后,对奥林匹克金矿床、布拉卡达特矿床、维尔宁矿床、库拉纳赫矿床和苏霍伊洛克矿床等进行了重新评估。

脚注

http://www.goldsci.ac.cn/article/2021/1005-2518/1005-2518-2021-29-3-355.shtml

Calamak M Yanmaz A M2016.Uncertainty quantification of transient unsaturated seepage through embankment dams[J].International Journal of Geomechanics,DOI:10.1061/(ASCE)GM.1943-5622.0000823.

Eberhardt E Stead D Stimpson B1999.Quantifying progressive pre-peak brittle fracture damage in rock during uniaxial compression[J].International Journal of Rock Mechanics and Mining Sciences,36:361-380.

Hassan S Rodriguez D G Cascante G al et2020.Effects of a fracture on ultrasonic wave velocity and attenuation in a homogeneous medium[J].Geotechnical Testing Journal43(2):20180200. DOI:10.1520/GTJ20180200.

Hu Dawei Zhou Hui Pan Pengzhi al et2010.Study of permeability of sandstone in triaxial cyclic stress tests[J].Rock and Soil Mechanics31(9):2749-2754.

Hu Shaohua Chen Yifeng Zhou Chuangbing2014.Laboratory test and mesomechanical analysis of permeability variation of Beishan granite[J].Chinese Journal of Rock Mechanics and Engineering33(11):2200-2209.

Huang Yuanzhi Wang Enzhi2007.Experimental study of the laws between the effective confirming pressure and rock permeability[J].Journal of Tsinghua University(Science and Technology)47(3):38-41.

Ju J Li Q Xu J al et2020.Self-healing effect of water-conducting fractures due to water-rock interactions in undermined rock strata and its mechanisms[J].Bulletin of Engineering Geology and the Environment79(1):287-297.

Ku C Y Liu C Y Su Y al et2018.Modeling of transient flow in unsaturated geomaterials for rainfall-induced landslides using a novel spacetime collocation method[J].Geofluids,2018:1-16.

Li Wenliang Zhou Jiaqing He Xianglan al et2017.Nonlinear flow characteristics of broken granite subjected to confining pressures[J].Rock and Soil Mechanics38(Supp.1):140-150.

Luo Z Wang W Qin Y al et2019.Early warning of rock mass instability based on multi-field coupling analysis and microseismic monitoring[J].Transactions of Nonferrous Me-tals Society of China29(6):1285-1293.

Wang Wei Chen Xi Tian Zhenyuan al et2016.Experimental study on stress-seepage coupling properties of sandstone under different drainage conditions[J].Chinese Journal of Rock Mechanics and Engineering35(Supp.2):3540-3551.

Wang Wei Xu Weiya Wang Rubin al et2015.Permeability of dense rock under triaxial compression[J].Chinese Journal of Rock Mechanics and Engineering34(1):40-47.

Wang Xusheng Chen Zhanqing2006.Hydrodynamic analysis of transient method in rock[J].Chinese Journal of Rock Me-chanics and Engineering25(Supp.1):3098-3103.

Yang Xiurong Jiang Annan Zhang Fengrui al et2019.Experimental study on seepage characteristics of red sandstone with different confining pressure and different damage degree[J].Journal of China Coal Society44(Supp.1):101-109.

Yin Liming Guo Weijia Chen Juntao2014.Development of true triaxial rock test system of coupled stress-seepage and its application[J].Chinese Journal of Rock Mechanics and Engineering33(Supp.1):2820-2826.

Zhang Junwen Song Zhixiang Fan Wenbing al et2019.Experimental study on mechanical behavior and permeability characteristics of sandstone under stress-seepage coupling[J].Chinese Journal of Rock Mechanics and Engineering38(7):1364-1372.

Zhang Peisen Hou Jiqun Zhao Chengye al et2020.Experimental study on seepage characteristics of red sandstone with different confining pressure and different damage degree[J].Chinese Journal of Rock Mechanics and Engineering39(12):1-11.

Zhao Y J Wang F G Li C al et2018.Study of the corrosion characteristics of tunnel fissures in a karst area in southwest China[J].Geofluids,2018:1-19.

Zheng Zhi Qin Jiajun Wu Kunming al et2017.Permeability measurement method and experimental study on hard rock failure process[J].Journal of Hubei Engineering University37(3):78-80.

Zuo Yujun Sun Wenjibin Wu Zhonghu al et2018.Experiment on permeability of shale under osmotic pressure and stress coupling [J].Rock and Soil Mechanics,(9):3253-3260.

胡大伟,周辉,潘鹏志,等,2010.砂岩三轴循环加卸载条件下的渗透率研究[J].岩土力学31(9):2749-2754.

胡少华,陈益峰,周创兵,2014.北山花岗岩渗透特性试验研究与细观力学分析[J].岩石力学与工程学报33(11):2200-2209.

黄远智,王恩志,2007.低渗透岩石渗透率与有效围压关系的实验研究[J].清华大学学报(自然科学版)47(3):38-41.

李文亮,周佳庆,贺香兰,等,2017.不同围压下破碎花岗岩非线性渗流特性试验研究[J].岩土力学38(增1):140-150.

王伟,陈曦,田振元,等,2016.不同排水条件下砂岩应力渗流耦合试验研究[J].岩石力学与工程学报35(增2):3540-3551.

王伟,徐卫亚,王如宾,等,2015.低渗透岩石三轴压缩过程中的渗透性研究[J].岩石力学与工程学报34(1):40-47.

王旭升,陈占清,2006.岩石渗透试验瞬态法的水动力学分析[J].岩石力学与工程学报25(增1):3098-3103.

杨秀荣,姜谙男,张峰瑞,等,2019.破裂石灰岩在渗透压—应力耦合作用下渗流特性研究[J].煤炭学报44(增1):101-109.

尹立明,郭惟嘉,陈军涛,2014.岩石应力—渗流耦合真三轴试验系统的研制与应用[J].岩石力学与工程学报33(增1):2820-2826.

张俊文,宋治祥,范文兵,等,2019.应力—渗流耦合下砂岩力学行为与渗透特性试验研究[J].岩石力学与工程学报38(7):1364-1372.

张培森,侯季群,赵成业,等,2020.不同围压不同损伤程度红砂岩渗流特性试验研究[J].岩石力学与工程学报39(12):1-11.

郑志,秦佳俊,吴坤铭,等,2017.硬岩破坏过程中渗透率测定方法与试验研究[J].湖北工程学院学报37(3):78-80.

左宇军,孙文吉斌,邬忠虎,等,2018.渗透压—应力耦合作用下页岩渗透性试验[J].岩土力学,(9):3253-3260.

文章导航

/

[an error occurred while processing this directive]