img

QQ群聊

img

官方微信

  • CN 62-1112/TF 
  • ISSN 1005-2518 
  • 创刊于1988年
高级检索
智慧矿山专栏

露天矿电铲铲装移动轨迹规划研究

  • 公凡波 ,
  • 毕林
展开
  • 1.中南大学资源与安全工程学院,湖南 长沙 410083
    2.中南大学数字矿山研究中心,湖南 长沙 410083
公凡波(1995-),男,安徽宿州人,硕士研究生,从事数字矿山方面的研究工作。fanbo_gong@163.com

收稿日期: 2020-09-16

  修回日期: 2021-01-19

  网络出版日期: 2021-03-22

基金资助

国家自然科学基金项目“基于深度学习和距离场的复杂金属矿体三维建模技术研究”(41572317);国家重点研发计划项目“基于大数据的金属矿开采装备智能管控技术研发与示范”(2019YFC0605300)

Research on Trajectory Planning of Electric Shovel in Open-pit Mine

  • Fanbo GONG ,
  • Lin BI
Expand
  • 1.School of Resources and Safety Engineering,Central South University,Changsha 410083,Hunan,China
    2.Digital Mine Research Center,Central South University,Changsha 410083,Hunan,China

Received date: 2020-09-16

  Revised date: 2021-01-19

  Online published: 2021-03-22

摘要

自主铲装技术是未来露天矿智能开采的核心环节之一。为提高电铲在自主铲装过程中的工作效率,提出了一种电铲铲装移动路线的优化方法。在已知电铲工作区域的基础上,基于贪婪算法规划出电铲移动次数最少的作业位置集;在给定起始挖掘点的基础上,使用遗传算法生成电铲铲装移动最短路径,并规划每个位置对应的挖掘区域;最后结合电铲作业的相关几何约束,进一步优化电铲移动路径并调整相应挖掘区域规划,形成最终的电铲作业最优轨迹。试验结果表明,生成的电铲移动路径总距离短,挖掘区域规划符合实际生产要求,该研究结果可为自主铲装电铲的移动轨迹规划提供指导。

本文引用格式

公凡波 , 毕林 . 露天矿电铲铲装移动轨迹规划研究[J]. 黄金科学技术, 2021 , 29(1) : 43 -52 . DOI: 10.11872/j.issn.1005-2518.2021.01.165

Abstract

Intelligent mining is the mainstream direction of the future development of open-pit mines.Eelectric shovel is the main production equipment of open-pit mines,so the study of electric shovel autonomous shoveling technology is one of the core steps to realize the intelligent mining of open-pit mines in the future.During the autonomous shoveling process,the electric shovel uses its excavation mechanism,shovels the ore out of the mine and dumps the ore into a transport truck that the ore has been parked at the dump position.When the shovel has finished loading the ore shovel in the corresponding mining area of the current working position,it will slowly move through its moving mechanism to the next position point and continue to shovel the ore pile in the target area.Because of the huge volume of the electric shovel itself,the continuous work of the excavation mechanism and the moving mechanism consume a lot of electric energy. In order to improve the efficiency of the electric shovel in the process of autonomous shoveling,reduce the energy consumption of the electric shovel work,this paper proposed a method of optimizing the moving route of the shovel,by planning the electric shovel moving route and digging area,shortening the length of the electric shovel moving route.A method for optimizing the mobile route of electric shoveling was proposed.On the basis of the known electric shovel working area,in order to excavate all the ore piles in the working area and the electric shovel moves the least number of times,greedy algorithm was used to plan the set of job locations where the shovel moves the least number of times.By increasing the transition point and other ways to further optimize the electric shovel movement path and adjust the corresponding mining area planning,to form the optimal trajectory of the final electric shovel operation.Selecting the ore pile after blasting in an area in a mine aerial map as an electric shovel to be shoveled,based on the above method, the mobile route of electric shovel loading was optimized.The results show that the total distance of the generated electric shovel moving path is short,and the planned excavation area meets the actual production requirements,which proves that the method can provide guidance for the movement trajectory planning of the autonomous shovel.

参考文献

null Al-shihabi S,Arafeh M,Barghash M,2015.An improved hybrid algorithm for the set covering problem[J].Computers & Industrial Engineering,85:328-334.
null Beasley P,McAree P R,2013.Design and construction of a scale robotic excavator work-cell to test automated excavation algorithms[C]//2013 IEEE/ASME International Conference on Advanced Intelligent Mechatronics.Wollongong,Australia:IEEE.
null Bradley D,Seward D W,1998.The development,control and operation of an autonomous robotic excavator[J].Journal of Intelligent and Robotic Systems,21(1):73-97.
null Cannon H,Burnett S,Colburn S,al et,1999.Extended Earthmoving with an Autonomous Excavator[D].Pittsburgh:Carnegine Mellon University.
null Dunbabin M,Corke P,2006.Autonomous excavation using a rope shovel[J].Journal of Field Robotics,23(6/7):379-394.
null Feng Fubao,2006.Set Cover Problem Research[D].Jinan:Shandong University.
null Li Junwei,2017.Research on Traveling Salesman Problem of Logistics Distribution[D].Harbin:Harbin Institute of Te-chnology.
null Ren Haonan,2008.Research on Genetic Algorithm for Solving Traveling Salesman Problem[D].Jinan:Shandong University.
null Sakaida Y,Chugo D,Yamamoto H,al et,2008.The analysis of excavator operation by skillful operator-extraction of common skills[C]//SICE Annual Conference.Chofu,Tokyo,Japan:IEEE.
null Seo J,Lee S,Kim J,al et,2011.Task planner design for an automated excavation system[J].Automation in Construction,20(7):954-966.
null Singh S,1994.Developing plans for robotic excavators[C]//Proceedings of the ASCE Conference on Robotics for Challenging Environments.Albuquerque,New Mexico:American Society of Civil Engineers.
null Singh S,1995.Learning to predict resistive forces during robotic excavation[C]//Proceedings of 1995 IEEE International Conference on Robotics and Automation.Nagoya,Aichi,Japan:IEEE.
null Singh S,Simmons R,1992.Task planning for robotic excavation[C]//Proceedings of the IEEE/RSJ International Conference on Intelligent Robots and Systems.Raleigh,N C,USA:IEEE:1284-1291.
null Sun Wenbin,Wang Jiang,2016.An algorithm for TSP problem based on genetic algorithm and multi-optimization operation[J].Geography and Geo-Information Science,32(4):1-4.
null Wang Yiyuan,2017.Research on Methods of Several Kinds of Set Covering Problems[D].Changchun:Jilin University.
null Winstanley G,Usher K,Corke P,al et,2007.Dragline automation-A dedade of development-Shared autonomy for improving mining equipment productivity[J].IEEE Robotics & Automation Magazine,14(3):52-64.
null Yao Guohui,2009.Studies on Algorithms for Combinatorial Optimization Problems[D].Jinan:Shandong University.
null Yu Yingying,Chen Yan,Li Taoying,2014.Improved genetic algorithm for solving TSP[J].Control and Decision,29(8):1483-1488.
null Yuan Hao,2017.Research and Application of Traveling Salesman Problem[D].Nanjing:Nanjing University of Posts and Telecommunications.
null Yue Pengqi,2019.Exploration of solving TSP problem based on genetic algorithms[J].Modern Information Technology,3(4):10-12.
null 冯富宝,2006.集合覆盖问题研究[D].济南:山东大学.
null 李俊纬,2017.物流配送TSP问题的研究[D].哈尔滨:哈尔滨工业大学.
null 任昊南,2008.用遗传算法求解TSP问题[D].济南:山东大学.
null 孙文彬,王江,2016.一种基于遗传算法的TSP问题多策略优化求解方法[J].地理与地理信息科学,32(4):1-4.
null 王艺源,2017.若干集合覆盖问题的方法研究[D].长春:吉林大学.
null 姚国辉,2009.若干组合优化问题的算法研究[D].济南:山东大学.
null 于莹莹,陈燕,李桃迎,2014.改进的遗传算法求解旅行商问题[J].控制与决策,29(8):1483-1488.
null 袁豪,2017.旅行商问题的研究与应用[D].南京:南京邮电大学.
null 岳鹏齐,2019.基于遗传算法解决TSP问题探索[J].现代信息科技,3(4):10-12.
文章导航

/