李恒(1992-),男,陕西宝鸡人,助理工程师,从事难处理金矿选矿研究工作。980848142@qq.com |
收稿日期: 2020-06-22
修回日期: 2020-08-20
网络出版日期: 2021-03-22
基金资助
英国子午线矿业公司获得巴西喀巴卡项目
的关键许可
Experimental Research on Flotation of a Refractory Gold and Copper Oxide Ore in Gansu
Received date: 2020-06-22
Revised date: 2020-08-20
Online published: 2021-03-22
甘肃某难选金铜氧化矿金含量为4.83 g/t,铜含量为1.18%,铜氧化率高达95.87%。铜矿物以难选的硅孔雀石为主,且与脉石矿物关系密切,金与铜矿物呈伴生关系。对原矿工艺矿物学进行了系统的研究,分析了尾矿中铜、金损失的原因。在磨矿细度为-74 μm占80%,Na2S作硫化剂,CuSO4作活化剂,丁基黄药、羟肟酸和25号黑药作捕收剂的条件下,采用一次粗选,四次扫选,粗精矿再磨后三次精选硫化浮选工艺流程,可获得金品位为86.65 g/t、金回收率为89.11%,铜品位为16.93%、铜回收率为71.92%,银品位为216.24 g/t、银回收率为87.26%的金铜精矿。金铜精矿可采用热压预氧化—无氰化工艺流程回收金铜,该选冶流程可为金铜氧化矿的开发利用提供借鉴。
李恒 . 甘肃某难选金铜氧化矿浮选试验研究[J]. 黄金科学技术, 2021 , 29(1) : 164 -172 . DOI: 10.11872/j.issn.1005-2518.2021.01.114
Silicon malachite is an extremely refractory copper oxide mineral,and the focus of chrysocolla flotation research is the development of new reagents.However, the selectivity and price factors of new pharmaceuticals restrict their industrial applications.In order to improve the flotation index under the premise of using conventional flotation reagents, it is very important to conduct process mineralogy research on refractory copper oxide ore.A refractory gold-copper oxide ores in Gansu Province contains Au 4.83 g/t and Cu 1.18%. The oxidation rate of Cu is as high as 95.87%.The copper minerals are mainly chrysocolla, which is difficult to select and closely related to gangue minerals.Gold is associated with copper minerals.Based on the study of mineralogy of raw ore process, the causes of copper and gold losses in tailings were analyzed and discussed.Sulfide flotation was adopted.After grinding,the products with fineness less than 74 μm accounted for 80%.Under the conditions of sodium sulfide as curing reagent, copper sulfate as activator, butyl xanthate, hydroxamic acid and No.25 dithiophosphate as collector, the sulfide flotation process adopted is “roughing once,sweeping four times,and regrinding coarse concentrate for three times”.The results show that the gold-copper concentrate with Au grade of 86.65 g/t, Au recovery rate of 89.11%, Cu grade of 16.93%, Cu recovery rate of 71.92%,Ag grade of 216.24 g/t and Ag recovery rate of 87.26% was obtained.Through analysis,it is believed that there are 4 reasons for the loss of copper and gold in tailings.1)The oxidation rate of copper is high, there are many types of copper minerals,and there are differences in floatability,in addition,silicon malachite is the main copper-bearing mineral, and its floatability is not good.2)There is a phenomenon that fine-grained silicon malachite is wrapped in gangue minerals.3) The tailings screening analysis shows that the copper lost in the tailings is of fine grade,therefore, the loss of this part of copper in the tailings is a reasonable loss.4)The gold phase analysis results show that the distribution rate of silicate-coated gold and carbonate-coated gold in the tailings is 76.38%, and the gold lost in the tailings is mainly wrapped in veins stone minerals.Gold-copper concentrates can be pre-oxidized by hot-pressing and non-cyanide to recover gold and copper.This smelting process can provide a certain reference for the development and utilization of gold-copper oxide copper mine.
据Resource World网站消息,英国子午线矿业公司(Meridian Mining)已获得其位于巴西马托格罗索州喀巴卡(Cabacal)铜金项目勘探活动关键的环境许可证。在获得环境许可证后,公司计划尽快开展钻探及地球物理工作。子午线公司的管理团队负责管理喀巴卡项目勘探等活动,并严格按照巴西的新冠疫情(Covid-19)防治要求开展工作。
该公司从威勒—桑达有限公司(Willemita Sondagens Ltd.)租借了2台金刚石钻机,目前正在喀巴卡项目南部地区开展10 000 m的钻探工作,预计第一批岩心将在4月下旬送实验室分析测试;同时组织专人对英国石油公司和力拓公司(BP/Rio Tinto)前期在该矿所做的钻孔数据库进行评估。
地磁和地球物理调查公司(Geomag S/A Prospeccoes Geofisicas)的团队计划开展地面和井下电磁(EM)调查,第一批EM调查工作将于下周开始。野外保障团队已经到位,主要任务包括确定历史钻孔的精确位置,测井和采样设施的准备,以及矿山附近的勘查工作。
英国石油公司曾在1980年至1990年在矿山南部地区开展了约400个钻孔的钻探工作,确定该矿床成矿类型为VMS型铜金(+银-锌-铅)矿。子午线公司此次喀巴卡矿山钻探将大部分集中在验证英国石油公司见矿化的钻孔位置。该公司已与地磁和地球物理调查公司签订合同,由后者负责在矿山和矿山周边环境中进行75线公里(line-km)的固定环表面EM定向测量,并对2021年实施的钻孔开展孔内EM测量。
(来源:全球地质矿产信息网)
http://www.goldsci.ac.cn/article/2021/1005-2518/1005-2518-2021-29-1-164.shtml
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
崔毅琦,孟奇,王飞旺,等,2016.低品位高结合率氧化铜矿选冶联合试验[J].中南大学学报(自然科学版),47(8):2550-2555.
|
戴柯进,陈代雄,张芹,等,2016.国内某高细泥氧化铜矿选矿试验[J].有色金属工程,6(2):52-55,100.
|
雷力,王恒峰,曹欣,2014.某含铜金矿石选矿试验研究[J].黄金,35(9):56-60.
|
李国尧,2017.某高氧化率铜矿石浮选试验[J].现代矿业,33(12):102-104.
|
李新星,李红松,杨阳,2015.某难选氧化铜矿石浮选试验[J].现代矿业,31(7):73-75.
|
李有辉,李成必,张行荣,等,2017.云南某氧化铜矿石浮选试验[J].金属矿山,(4):68-71.
|
龙伟,2017.某难选低品位氧化铜矿选矿工艺研究[D].武汉:武汉科技大学.
|
吕超,赵轩,梁溢强,等,2019.云南某氧化铜浮选试验研究[J].有色金属(选矿部分),(3):46-50.
|
宁发添,冯忠伟,莫江敏,等,2018.广西某难选氧化铜矿选矿试验研究[J].有色金属(选矿部分),(4):15-18.
|
彭英健,吕超,姚有利,2019.云南东川某氧化铜矿浮选试验研究[J].矿业研究与开发,39(3):25-28.
|
乔吉波,王少东,张晶,等,2018.缅甸某氧化铜矿选矿工艺研究[J].矿冶工程,38(3):71-73,78.
|
孙广周,单勇,黄斌,等,2017.东川汤丹难选氧化铜矿选矿试验研究[J].有色金属(选矿部分),(4):7-10,63.
|
孙志健,陈经华,李成必,等,2013.某含泥难选氧化铜矿选矿试验研究[J].有色金属(选矿部分),(4):5-8,13.
|
孙忠梅,2016.某氧化铜矿石硫化浮选试验[J].现代矿业,32(2):55-57,62.
|
孙忠梅,龙翼,张兴勋,等,2019.提高难选氧化铜矿选矿回收率试验研究[J].有色金属(选矿部分),(5):45-49.
|
王凯,2014.高结合率难选氧化铜矿选矿回收试验研究[D].昆明:昆明理工大学.
|
王龙,牛福生,张晋霞,等,2016.低品位氧化铜矿石选矿工艺研究进展[J].金属矿山,(9):127-131.
|
王伊杰,文书明,刘丹,等,2013.难处理高结合率氧化铜矿选冶联合工艺研究[J].昆明理工大学学报(自然科学版),38(5):28-34.
|
印万忠,吴凯,2013.难选氧化铜矿选冶技术现状与展望[J].有色金属工程,3(6):66-70.
|
张凤华,宋宝旭,2014.复杂难选氧化铜矿高效利用工艺研究[J].矿冶工程,34(6):26-28,32.
|
/
〈 |
|
〉 |