收稿日期: 2020-05-18
修回日期: 2020-08-03
网络出版日期: 2021-03-22
基金资助
国家重点研发计划项目“深部集约化开采生产过程智能管控技术”(2017YFC0602905)
Obstacle Detection Technology of Mine Electric Locomotive Driverless Based on Computer Vision Technology
Received date: 2020-05-18
Revised date: 2020-08-03
Online published: 2021-03-22
针对传统计算机视觉方法难以实现障碍物实时检测和定位的问题,提出传统计算机视觉技术与深度学习目标检测算法YOLOv3相结合的障碍物智能检测方法。首先,采集电机车行驶区域(即有效检测区域)存在的障碍物数据并制作VOC格式数据集,使用YOLOv3训练数据集,得到障碍物检测模型;然后,采用传统计算机视觉技术定位到轨道,使用“3邻域”搜索法获得轨道线坐标值,根据距离信息向轨道外侧扩展一定距离,提取有效检测区域,同时网格化图片,将障碍物的坐标换算为实际距离;最后,使用障碍物检测模型对有效检测区域进行检测。试验结果表明:该方法可以识别行驶区域内多种特征差异很大的目标物体,如电机车、人和大块落石等;该方法每秒可以处理6帧图片,现场采集的实际数据测试平均精确率达到93.2%。
王京华 , 王李管 , 毕林 . 基于计算机视觉技术的矿井电机车无人驾驶障碍物检测技术[J]. 黄金科学技术, 2021 , 29(1) : 136 -146 . DOI: 10.11872/j.issn.1005-2518.2021.01.089
The mining of mineral resources is getting deeper and deeper,the working environment is bad,the employees are aging seriously,and the human cost is rising,which brings great challenges to the development of mining industry.Intelligent mine operation has become an inevitable trend.As a part of mine intellec-tualization,unmanned transportation system is very important for mine,which means the improvement of safety production efficiency can achieve zero injury and zero time loss.Considering the development demand of driverless electric vehicle and the traditional computer vision method,it is difficult to realize the real-time detection and location of obstacles.An intelligent obstacle detection method based on the combination of traditional computer vision technology and deep learning target detection algorithm YOLOv3 was proposed.First of all,the video data of obstacles in the driving area of electric locomotive(this paper calls it effective detection area) were collected,using an image annotation tool namely labelimg to make VOC data set,using YOLOv3 to train data set,according to the feedback results,adjust the parameters continuously to obtain the relative optimal parameters,and finally get the obstacle detection model.Then use the traditional computer vision technology to locate the track by edge,texture and other information,using the “3 neighborhood” search method to get the track line coordinate value of left and right track lines,and expand a certain distance to the outside of the track according to the distance information,extracting the effective detection area,thus reducing the computational complexity of the later obstacle detection,at the same time,gridding images,converting the coordinates of obstacles to the actual distance.Finally,using the obstacle detection model to detect the effective detection area and respond to the detection results.Experimental results show that the method can identify many objects with different characteristics in the driving area,such as electric locomotive,people,large falling rocks,etc.It can process 6 pictures per second,and the average accuracy of the actual data collected in the field reaches 93.2%,it has good performance in real-time and accuracy,and has a good effect in the underground mine scene.
null | Deng J,Dong W,Socher R,al et,2009.ImageNet:A large-scale hierarchical image database[C]//2009 IEEE Computer Society Conference on Computer Vision and Pattern Recognition (CVPR 2009).Miami:IEEE:248-255. |
null | Dewan A,Caselitz T,Tipaldi G D,al et,2016. Motion-based detection and tracking in 3D LiDAR scans[C]// 2016 IEEE International Conference on Robotics and Automation (ICRA). Washington DC:IEEE:4508-4513. |
null | Guo Chunming,2019.Obstacle detection method in front of track based on video image[J].Electronic Measurement Technology,42(12):55-59. |
null | Güzel M S,Zakaria W,2013.A hybrid architecture for vision-based obstacle avoidance[J].Advances in Mechanical Engineering,5:545-550. |
null | He K M,Zhang X Y,Ren S Q,al et,2016.Deep residual learning for image recognition[C]//2016 IEEE Conference on Computer Vision and Pattern Recognition(CVPR). Las Vegas:IEEE:770-778. |
null | He K,Gkioxari G,Dollár P,al et,2020.Mask R-CNN[J].IEEE Transactions on Pattern Analysis & Machine Intelligence,42(2):386-397. |
null | Lin T Y,Dollár P,Girshick R,al et,2017.Feature pyramid networks for object detection[C]//2017 IEEE Conference on Computer Vision and Pattern Recognition (CVPR).Honolulu:IEEE:936-944. |
null | Lin T,Maire M,Belongie S,al et,2014.Microsoft COCO:Common objects in context[C]//Computer Vision-ECCV 2014.Cham:Springer:740-755. |
null | Liu L,Ouyang W,Wang X,al et,2018.Deep learning for generic object detection:A survey[J].International Journal of Computer Vision,128(2):261-318. |
null | Liu Wenqi,2016.Detection Algorithm of Railway Foreign Body Based on Depth Neural Network [D].Beijing:Beijing Jiaotong University. |
null | Lou Xinyu,Wang Hai,Cai Yingfeng,al et,2019. Research on real-time road obstacle detection and classification algorithm using 64 line lidar [J]. Automotive Engineering,41(7):779-784. |
null | Redmon J,Divvala S,Girshick R,al et,2016.You only look once:Unified,real-time object detection[C]// 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR). Las Vegas:IEEE:779-788. |
null | Redmon J,Farhadi A,2017. YOLOv3:An incremental improvement[C]// IEEE Conference on Computer Vision and Pattern Recognition(CVPR).Honolulu:IEEE:779-788. |
null | Ruder M,Mohler N,Ahmed F,2003.An obstacle detection system for automated trains[C]//Intelligent Vehicles Symposium. Washington DC:IEEE:180-185. |
null | Song Huaibo,He Dongjian,Xin Xiangjun,2011.Unstructured road detection and obstacle recognition based on machine vision [J].Journal of Agricultural Engineering,27(6):225-230. |
null | Tong Lei,Zhu Liqiang,Yu Zujun,al et,2012.Detection of track foreign matters based on vehicle mounted forward-looking camera[J].Transportation System Engineering and Information,12 (4):79-83. |
null | Wang Xinzhu,Li Jun,Li Hongjian,al et,2016.Automatic obstacle detection method based on 3D lidar and depth image [J]. Journal of Jilin University(Engineering Edition),46(2):360-365. |
null | Xie Desheng,Xu Youchun,Wang Rendong,al et,2018.Obstacle detection and tracking of unmanned vehicle based on 3D lidar[J]. Automotive Engineering,(8):952-959. |
null | Zhuang Fuzhen,Luo Ping,He Qing,al et,2015.Research progress of transfer learning[J].Journal of Software,26(1):26-39. |
null | 郭春明,2019.基于视频图像的轨道前方障碍物检测方法[J].电子测量技术,42(12):55-59. |
null | 刘文祺,2016.基于深度神经网络的铁路异物检测算法[D].北京:北京交通大学. |
null | 娄新雨,王海,蔡英凤,等,2019.采用64线激光雷达的实时道路障碍物检测与分类算法的研究[J].汽车工程,41(7):779-784. |
null | 宋怀波,何东健,辛湘俊,2011.基于机器视觉的非结构化道路检测与障碍物识别方法[J].农业工程学报,27(6):225-230. |
null | 同磊,朱力强,余祖俊,等,2012.基于车载前视摄像机的轨道异物检测[J].交通运输系统工程与信息,12(4):79-83. |
null | 王新竹,李骏,李红建,等,2016.基于三维激光雷达和深度图像的自动驾驶汽车障碍物检测方法[J].吉林大学学报(工学版),46(2):360-365. |
null | 谢德胜,徐友春,王任栋,等,2018.基于三维激光雷达的无人车障碍物检测与跟踪[J].汽车工程,(8):952-959. |
null | 庄福振,罗平,何清,等,2015.迁移学习研究进展[J].软件学报,26(1):26-39. |
/
〈 | 〉 |