收稿日期: 2019-12-24
修回日期: 2020-03-25
网络出版日期: 2020-08-27
基金资助
湖南省自然科学基金项目“温压耦合与循环动力扰动作用下岩石的损伤演化及微观破裂机理研究”(2017JJ3389);中南大学创新项目“研究生自主创新项目”(2019zzts662)
Experimental Study on Mechanical Impact Breaking Rock with Microwave Radiation
Received date: 2019-12-24
Revised date: 2020-03-25
Online published: 2020-08-27
微波辅助冲击式破岩是实现快速破碎硬岩的重要手段,开展微波辐射对岩石抗冲击性能的研究具有重要的理论和实际意义。采用工业微波炉对砂岩进行不同功率和不同时间的辐射试验,测试了砂岩在辐射前后的波速、孔隙率和动态力学强度。结果发现:在5 kW的辐射功率下砂岩升温速率达到1.29 ℃/s,3 kW的辐射功率下达到1.04 ℃/s;微波辐射后砂岩波速不断降低,孔隙率不断增大,5 kW辐射4 min后波速降低了34%,孔隙率增加了近70%;在5 kW和3 kW辐射4 min后,砂岩动态压缩强度分别降低了60.4 MPa和44 MPa。研究结果说明微波辐射能够使砂岩快速升温,在热应力的作用下试样内部产生裂纹并扩展,使得波速下降而孔隙度增大。辐射加热大幅地降低了砂岩动态压缩强度。
胡毕伟 , 尹土兵 , 李夕兵 . 微波辐射辅助机械冲击破碎岩石动力学试验研究[J]. 黄金科学技术, 2020 , 28(4) : 521 -530 . DOI: 10.11872/j.issn.1005-2518.2020.04.016
In industrial production,dynamic load rock breaking equipment is widely used in metal and non-metal mines,such as drill,downhole drill and cable drill.Mechanical rock breaking is often faced with such problems as low crushing efficiency,poor crushing effect and expensive equipment.Therefore,it is necessary to find an efficient,simple and safe method to break the rock.Microwave-assisted percussive rock breaking is an important means to break hard rock quickly.It is of great theoretical and practical significance to study the impact resistance of rock by microwave radiation.In this paper,an industrial microwave oven was used to test the radiation of sandstone with different power and time.The wave velocity of sandstone before and after radiation were measured and the porosity of rock before and after radiation were measured by nuclear magnetic resonance equipment.Then,the dynamic compressive mechanical strength of rock was tested by SHPB method,and the rock failure process and characteristics were recorded by high-speed camera.The results show that under the microwave radiation,the sandstone heating speed is very fast.Under the radiation power of 5 kW,the sandstone heating rate reaches 1.29 ℃/s,and under the condition of 3 kW,it reaches 1.04 ℃/s.After the microwave radiation,the wave velocity of sandstone decrease continuously and the porosity increase continuously.After 5 kW radiation for 4 min,the wave velocity decreases by 34% and the porosity increases by nearly 70%.The dynamic compressive strength of sandstone is also continuously reduced,and after 5 kW and 3 kW radiation for 4 min,it decreases by 60.4 MPa and 44 MPa respectively.Under the action of impact stress,rock shows radial failure modes and axial failure modes.The results show that microwave radiation can rapidly heat up sandstone.Because of the thermal stress,cracks are generated inside the sample then spread,which makes the wave velocity decrease and the porosity increase and the dynamic compressive strength decrease drastically.
1 | 卢高明,李元辉,Hassani F,等.微波辅助机械破岩试验和理论研究进展[J].岩土工程学报,2016,38(8):1497-1506. |
1 | Lu Gaoming,Li Yuanhui,Hassani F,et al.Review of theoretical and experimental studies on mechanical rock fragmentationusing microwave-assisted approach[J].Chinese Journal of Geotechnical Engineering,2016,38(8):1497-1506. |
2 | Haque K E.Microwave energy for mineral treatment processes—A brief review[J].International Journal of Mineral Processing,1999,57(1):1-24. |
3 | 喻清,丁德馨,张炬.微波辐照技术在矿业中的应用现状及发展趋势[J].黄金科学技术,2017,25(1):112-120. |
3 | Yu Qing,Ding Dexin,Zhang Ju. Application status and development trend of microwave irradiation technology in mining[J].Gold Science and Technology,2017,25(1):112-120. |
4 | Lu G M,Feng X T,Li Y H,et al.Experimental investigation on the effects of microwave treatment on basalt heating,mechanical strength,and fragmentation[J].Rock Mechanics and Rock Engineering,2019,52(8):2535-2549. |
5 | Peinsitt T,Kuchar F,Hartlieb P,et al.Microwave heating of dry and water saturated basalt,granite and sandstone[J].International Journal of Mining and Mineral Engineering,2010,21(1):18-29. |
6 | Hassani F,Nekoovaght P M,Gharib N.The influence of microwave irradiation on rocks for microwaveassisted underground excavation[J].Journal of Rock Mechanics and Geotechnical Engineering,2016,8(1):1-15. |
7 | Santos J,Rossi A.Influence of rock chemical composition in microwave heating and decontamination of drill cuttings[J].Materials Science Forum,2017,899(1):469-473. |
8 | Lu G M,Li Y H,Hassani F,et al.The influence of microwave irradiation on thermal properties of main rock-forming minerals[J].Applied Thermal Engineering,2017,112(1):1523-1532. |
9 | Olubambi P A.Influence of microwave pretreatment on the bioleaching behaviour of low-grade complex sulphide ores[J].Hydrometallurgy,2009,95(1/2):159-165. |
10 | 周子龙,李夕兵,刘希灵.深部岩石破碎方法[J].采矿与安全工程学报,2005,22(3):63-65. |
10 | Zhou Zilong,Li Xibing,Liu Xiling.Rock fragmentation method in deep level[J].Journal of Mining and Safety Engineering,2005,22(3):63-65. |
11 | 赵伏军,李夕兵,冯涛,等.动静载荷耦合作用下岩石破碎理论分析及试验研究[J].岩石力学与工程学报,2005,24(8):1315-1320. |
11 | Zhao Fujun,Li Xibing,Feng Tao,et al.Theoretical analysis and experiments of rock fragmentation under coupling dynamic and static loads[J].Chinese Journal of Rock Mechanics and Rock Engineering,2005,24(8):1315-1320. |
12 | Thostenson E,Chou T W.Microwave processing:Fundamentals and applications[J].Composites Part A: Applied Science and Manufacturing,1999,30(9):1055-1071. |
13 | Frosch G P,Tillich J E,Haselmeier R,et al.Probing the pore space of geothermal reservoir sandstones by Nuclear Magnetic Resonance[J].Geothermics,2000,29(6):671-687. |
14 | Liu D Q,Ge H K,Liu J R,et al.Experimental investigation on aqueous phase migration in unconventional gas reservoir rock samples by nuclear magnetic resonance[J].Journal of Natural Gas Science and Engineering,2016,36:837-851. |
15 | Zhou K Q,Chu Z H,Zhang Y Z,et al.Research of the detection method and thermal cracking of rock[J].Chinese Journal of Rock Mechanics and Engineering,2000,19(4):412-416. |
16 | Li X B,Gong F Q,Tao M,et al.Failure mechanism and coupled static-dynamic loading theory in deep hard rock mining:A review[J].Journal of Rock Mechanics and Geotechnical Engineering,2017,9(4):767-782. |
17 | Li X B,Lok T S,Zhao J.Dynamic characteristics of granite subjected to intermediate loading rate[J].Rock Mechanics and Rock Engineering,2005,38(1):21-39. |
18 | Zhang W Q,Sun Q,Hao S Q,et al.Experimental study on the variation of physical and mechanical properties of rock after high temperature treatment[J].Applied Thermal Engineering,2016,98:1297-1304. |
19 | Li H,Shi S L,Lu J X,et al.Pore structure and multifractal analysis of coal subjected to microwave heating[J].Powder Technology,2019,346:97-108. |
20 | 朱晶晶,李夕兵,宫凤强,等.单轴循环冲击下岩石的动力学特性及其损伤模型研究[J].岩土工程学报,2013,35(3):531-539. |
20 | Zhu Jingjing,Li Xibing,Gong Fengqiang,et al.Dynamic characteristics and damage model for rock under uniaxial cyclic impact compressive loads[J].Chinese Journal of Geotechnical Engineering,2013,35(3):531-539. |
21 | 宫凤强,李夕兵,刘希灵,等.一维动静组合加载下砂岩动力学特性的试验研究[J].岩石力学与工程学报,2010,29(10):2076-2085. |
21 | Gong Fengqiang,Li Xibing,Liu Xiling,et al.Experimental study of dynamic characteristics of sandstone under one-dimensional dynamic coupled static and dynamic loads[J].Chinese Journal of Rock Mechanics and Engineering,2010,29(10):2076-2085. |
22 | 刘柏禄,潘建忠,谢世勇.岩石破碎方法的研究现状及展望[J].中国钨业,2011,26(1):15-19. |
22 | Liu Bolu,Pan Jianzhong,Xie Shiyong.On the research development of back fragment and its prospect[J].China Tungsten Industry,2011,26(1):15-19. |
/
〈 | 〉 |