img

QQ群聊

img

官方微信

  • CN 62-1112/TF 
  • ISSN 1005-2518 
  • 创刊于1988年
高级检索
采选技术与矿山管理

不同含水率下红黏土软化模型及强度试验研究

  • 李怀鑫 ,
  • 林斌 ,
  • 陈士威 ,
  • 王鹏
展开
  • 1.安徽理工大学土木建筑学院,安徽 淮南 232001
    2.中铁十四局集团有限公司,山东 济南 250000
李怀鑫(1995-),男,河南信阳人,硕士研究生,从事岩土工程研究工作。lihuaixin520@163.com

收稿日期: 2019-07-10

  修回日期: 2020-03-12

  网络出版日期: 2020-07-01

基金资助

安徽理工大学研究生创新基金项目“基于土拱效应的土压力分布及桩间距计算研究”(2019cx2017)

Study on the Softening Model and Strength of Red Clay at Different Water Content

  • Huaixin LI ,
  • Bin LIN ,
  • Shiwei CHEN ,
  • Peng WANG
Expand
  • 1.School of Civil Engineering and Architecture,Anhui University of Science and Technology,Huainan 232001,Anhui,China
    2.China Railway 14 Bureau Group Co. ,Ltd. ,Jinan 250000,Shandong,China

Received date: 2019-07-10

  Revised date: 2020-03-12

  Online published: 2020-07-01

摘要

为研究重塑红黏土的软化特性和抗剪强度与含水率之间的关系,以山西长治地区重塑红黏土为试验材料,进行了不同含水率下的三轴不固结不排水试验。试验结果表明:山西长治地区重塑红黏土在含水率和围压较小的情况下易发生宏观剪切破坏,其应力—应变曲线出现了明显软化现象,采用改进的应力—应变软化模型能够较好地模拟试验曲线的变化趋势;山西长治地区重塑红黏土中矿物质伊/蒙间层含量较高,土体内部存在较大孔隙,随着含水率和围压的增加,试样由宏观剪切破坏变为塑性破坏,当含水率为15%~24%时,其不排水抗剪强度与含水率之间呈线性关系。该项研究成果为认识特殊红黏土的破坏机理及软化现象提供了参考,同时也为进一步建立特殊红黏土数学模型提供了理论基础。

本文引用格式

李怀鑫 , 林斌 , 陈士威 , 王鹏 . 不同含水率下红黏土软化模型及强度试验研究[J]. 黄金科学技术, 2020 , 28(3) : 442 -449 . DOI: 10.11872/j.issn.1005-2518.2020.03.130

Abstract

In engineering geology,red clay especially refers to the high plastic clay,which color is brownish-red or brown-yellow and so on,formed by lateralization of exposed rocks of the carbonate system.The red clay sample in this study was taken from 20 m underground in Changzhi area of Shanxi Province,China,which is a special red clay with high pores,high shrinkage and strong hydrophilic properties.The basic physical parameters of red clay were first measured according to the standard for geotechnical test methods(GB/T50123-1999),besides,the mineral composition of the red clay was appraised by X diffraction analysis.The results show that the content of the I/S layer in the red clay is high.In order to study the softening characteristics of the remodeling of red clay and the relationship between shear strength and moisture content,undrained triaxial tests was carried out using the TSZ-2 automatic strain control three-axis instrument.A total of 24 cylindrical specimens were produced during the experiment,each cylindrical sample size is 39.1 mm×80 mm.Because the moisture content of the original soil is about 17.0% to 23.7%,so the moisture content of remodel red clay is 15%,18%,21%,24% respectively.And confining pressures of 100 kPa,200 kPa and 300 kPa were applied respectively at each moisture content.The relationship between moisture content, principal stress difference,cohesion and internal friction angle was obtained from the experiment.When the moisture content changes, the remold red clay of Changzhi area of Shanxi Province have different failure forms.It would have macroscopic shear failure under low moisture content and confining pressure,meanwhile,the stress-strain curve has obviously softening phenomenon, and the modified stress-strain softening model can be better to simulate the test curve.Due to the high mineral content of I/S layer of the remolded red clay in Changzhi area,Shanxi Province,China,so the red clay has a large pore inside,with the increase of moisture content and confining pressure,the specimen from macro-shear damage to plastic damage,besides,when the moisture content is 15% to 24%,there is a linear relationship between the non-draining anti-shear strength and moisture content of this kind of red clay.The research results in this paper can provide reference for the related foundation treatment in the special red clay area of Changzhi,Shanxi Province,China,and also provide a theoretical basis for the further mathematical model of special red clay.

参考文献

1 姜洪涛.红粘土的成因及其对工程性质的影响[J].水文地质工程地质,2000,27(3):33-37.
1 Jiang Hongtao.The cause of red clay and its effect on engineering properties[J].Hydrogeology and Engineering Geo-logy,2000,27(3):33-37.
2 邢鲜丽,李同录,李萍,等.黄土抗剪强度与含水率的变化规律[J].水文地质工程地质,2014,41(3):53-59.
2 Xing Xianli,Li Tonglu,Li Ping,et al.Variation regularities of loess shear strength with the moisture content[J].Hydrogeology and Engineering Geology,2014,41(3):53-59.
3 张彦召,左双英,季永新.红黏土在原状及重塑状态下的力学性质试验研究[J].地下空间与工程学报,2017,13(6): 1477-1482.
3 Zhang Yanzhao,Zuo Shuangying,Ji Yongxin.Experimental study on undisturbed and reconstituted mechanical properties of red clay[J].Journal of Underground Space and Engineering,2017,13(6):1477-1482.
4 龚晓南,熊传祥,项可祥,等.黏土结构性对其力学性质的影响及形成原因分析[J].水利学报,2000,10(10):43-47.
4 Gong Xiaonan,Xiong Chuanxiang,Xiang Kexiang,et al.The formation of clay structure and its influence on mechanical characteristics of clay[J].Journal of Hydraulic Engineering,2000,10(10):43-47.
5 赵蕊,左双英,王嵩,等.不同含水量贵阳重塑红黏土三轴抗剪强度试验研究[J].水文地质工程地质,2015,42(5):90-95.
5 Zhao Rui,Zuo Shuangying,Wang Song,et al.Experiment and mechanism analysis of water contents on triaxial shear strength of the remodeled red clay of Guiyang[J].Hydrogeology and Engineering Geology,2015,42(5):90-95.
6 王英辉,张全秀,田鹏程,等.含水量变化对红粘土变形和强度特性的影响研究[J].工程勘察,2009,37(7):10-13.
6 Wang Yinghui,Zhang Quanxiu,Tian Pengcheng,et al.Effects of water content variation on the deformation and shear strength of laterite clay[J].Journal of Geotechnical Investigation and Surveying,2009,37(7):10-13.
7 余敦猛.武广客运专线原状红粘土强度和变形特性试验研究[D].长沙:中南大学,2008.
7 Yu Dunmeng.Experimental Study on Strength and Deformation Characteristics of Red Clay Along Wuhan-Guangzhou Passenger Line[D].Changsha:Central South University,2008.
8 黄质宏,朱立军,廖义玲,等.不同应力路径下红粘土的力学特性[J].岩石力学与工程学报,2004,23(15):2599-2603.
8 Huang Zhihong,Zhu Lijun,Liao Yiling,et al.Mechanical properties of red clay under different stress paths[J].Chinese Journal of Rock Mechanics and Engineering,2004,23(15):2599-2603.
9 谈云志,孔令伟,郭爱国,等.压实红黏土水分传输的毛细效应与数值模拟[J].岩土力学,2010,31(7):2289-2294.
9 Tan Yunzhi,Kong Lingwei,Guo Aiguo,et al.Capillary effect of moisture transfer and its numerical simulation of compacted laterite soil[J].Rock and Soil Mechanics,2010,31(7):2289-2294.
10 李广信.高等土力学[M].北京:清华大学出版社,2002.
10 Li Guangxin.Advanced Soil Mechanics[M].Beijing:Tsinghua University Press,2002.
11 Wood M D,Belkheiasr K,Liu D F.Strain softening and state parameter for sand modeling[J].Geotechnique,1994,44(2):335-339.
12 Conte E,Silvestri F,Troncone A.Stability analysis of slopes in soils with strain-softening behavior[J].Computers and Geotechnics,2010,37(5):710-722.
13 Alonso E,Alejano L R,Varas F,et al.Ground response curves for rock masses exhibiting strain-softening behavior[J].International Journal for Numerical and Analytical Methods in Geomechanics,2003,27(13):1153-1185.
14 Idriss I M,Dobry R,Singh R D,et al. Nonlinear behavior of soft clays during cyclic loading[J].Journal of Geote-chnical and Geoenvironmental Engineering,1978,104(12):1427-1447.
15 蔡袁强,陈静,王军.循环荷载下各向异性软黏土应变—软化模型[J].浙江大学学报(工学版),2008,42(6):1058-1064.
15 Cai Yuanqiang,Chen Jing,Wang Jun.Strain degradation model for anisotropic soft clay under cyclic loading[J].Journal of Zhejiang University(Engineering Science),2008,42(6):1058-1064.
16 王军,蔡袁强,徐长节,等.循环荷载作用下饱和软黏土应变软化模型研究[J].岩石力学与工程学报,2007,26(8):1713-1719.
16 Wang Jun,Cai Yuanqiang,Xu Changjie,et al.Study on strain softening model of saturated soft clay under cyclic loading[J].Chinese Journal of Rock Mechanics and Engineering,2007,26(8):1713-1719.
17 沈珠江.考虑剪胀性的土和石料的非线性应力应变模式[J].水利水运科学研究,1986,26(4):1-14.
17 Shen Zhujiang.A nonlinear ditatant stress-strain model for soils and rock materials[J].Scientific Research on Water Transport,1986,26(4):1-14.
18 张尔齐,常青.关于具有软化性能土的应力—应变关系的研究[J].哈尔滨建筑大学学报,2001,34(3):45-48.
18 Zhang Erqi,Chang Qing.Stress-strain relationship of description of softening behavior of soils[J].Journal of Harbin University of Civil Engineering and Architecture,2001,34(3):45-48.
19 周敏锋,张克绪.一种水泥土非线性应力—应变关系研究[J].哈尔滨工业大学学报,2005,37(10):1400-1403,1409.
19 Zhou Minfeng,Zhang Kexu. Study on a non-linear stress-strain relationship of cement soils[J].Journal of Harbin Institute of Technology,2005,37(10):1400-1403,1409.
20 赵蕊,左双英,孙志强.贵阳红黏土的应力—应变软化模型及参数研究[J].地下空间与工程学报,2018,14(5):1258-1264.
20 Zhao Rui,Zuo Shuangying,Sun Zhiqiang.Research of the stress-strain softening model and parameters of red clay in Guiyang[J].Chinese Journal of Underground Space and Engineering,2018,14(5):1258-1264.
文章导航

/