收稿日期: 2018-08-14
修回日期: 2018-12-11
网络出版日期: 2019-11-07
基金资助
国家自然科学基金项目“APAM强化絮网结构后全尾砂料浆流动性能演化机制研究”(51804134);国家自然科学基金项目“渗流—蠕变耦合作用下全尾砂胶结充填体力学性能演化规律及损伤破坏机制”(51804135);江西省自然科学基金项目“远距离输送过程中添加絮凝剂的高浓度全尾砂浆颗粒分散机理研究”(20181BAB216013);江西理工大学博士启动基金项目“阴离子型聚丙烯酰胺对似膏体管道输送稳定性的影响机理研究工作”(jxxjbs17011)
Risk Assessment of Filling Pipeline Wearing Based on Improved PCA and Ordered Multi-class Logistic
Received date: 2018-08-14
Revised date: 2018-12-11
Online published: 2019-11-07
为准确预测矿山充填管道磨损风险,建立改进PCA与有序多分类Logistic回归组合的充填管道磨损风险评估模型。结合实际经验,选取12项指标(9项定量指标和3项定性指标)建立评估模型。依据改进PCA算法,筛除影响力指数小的充填料浆密度和充填料浆腐蚀性2项指标,将优选出的主要指标代入有序多分类Logistic回归模型,依照相应概率大小进行风险性等级判定,最后预测矿山充填管道磨损风险等级概率。该方法摒弃了关联性较低的指标,得到可靠的充填管道磨损风险概率分布,为类似矿山科学预测管道磨损风险及采取有效防护措施提供了理论依据。
关键词: 充填管道磨损; 改进PCA; 有序多分类Logistic; 磨损风险; 风险等级概率
王石 , 汤艺 , 冯萧 . 基于改进PCA与有序多分类Logistic的充填管道磨损风险评估[J]. 黄金科学技术, 2019 , 27(5) : 740 -746 . DOI: 10.11872/j.issn.1005-2518.2019.05.740
The filling mining method is mainstream mining method used in major mines today.The safe implementation of filling technology depends on the construction of a good filling pipeline transportation system.Considering the complexity of the filled pipeline system and the large number and variety of influencing factors,in order to accurately predict the wear risk of the filling pipeline of the mine,a wear risk assessment of the filling pipeline based on the improved PCA and the ordered multi-class Logistic regression combination model was built.On the basis of practical experience,a total of 12 items including the volume fraction of the filling slurry,the filling doubled line,the corrosiveness of the filling slurry,and the material of the pipe were selected.Reasonable risk levels were divided according to the characteristics of each indicator and the corresponding evaluation model was constructed.The filling production data of four mines such as Jinchuan Longshou mine and Dahongshan copper mine were taken as samples.The improved PCA algorithm was used to analyze the correlation of each index,and the three principal components with a cumulative contribution rate of 91.125% and factor load of the principal component of each indicator were obtained.In the end,the two indicators with low correlation and small influence index,the density of the filling slurry(27.75) and the corrosiveness of the filling slurry(27.60) were deleted.The preferred main indicators were substituted into the ordered multi-class Logistic regression model,the continuous indicator values were linearly fitted to the discrete risk levels,and the regression coefficients,standard errors and significance levels of each index were calculated,and the equations of probability fluctuations were solved. Finally,the probability of four mines corresponding to different wear risks Ⅰ(not easy to wear),Ⅱ(relatively easy to wear),Ⅲ(easy to wear),Ⅳ(very easy to wear) were obtained. They were: Jinchuan Longshou mine is 0.247,0.440,0.154,0.153; Dahongshan copper mine is 0.179,0.240,0.323,0.258; Hedong gold mine is 0.181,0.227,0.345,0.247; Xincheng gold mine is 0.181,0.227,0.345,0.247.From a theoretical point of view,the risk level corresponding to the probability of the largest value was used as the final judgment level of the wear risk of the mine filling pipeline,and Jinchuan Longshou mine is Ⅱ,Dahongshan copper mine is Ⅲ,Hedong gold mine is Ⅲ,Xincheng gold mine is Ⅲ. The mine also makes corresponding level protection and maintenance measures based on this.From the actual production application,it is said that the probability of the Ⅳ risk level should be paid special attention,and the normal operation of the filling pipeline should be guaranteed to the greatest extent within the scope permitted by technology and funds. The mathematical method combining improved PCA and ordered multi-class Logistic regression avoids the collinearity between the various indicators,reduces the interference of the weak indicators on the evaluation results,and obtains the accurate risk of wear risk of filling the pipeline.It provides a theoretical basis for scientific prediction of pipeline wear risk and the implementation of effective and economical protection measures for similar mines.The mine can construct an appropriate filling pipeline protection system according to its own development.
1 | WangS,LiS,QinJ C,et al. Effect of anionic polyacrylamide on the structural stability of thickened tailings slurry in pipeline transportation[J].Advances in Materials Science and Engineering,2018. DOI:10.1155/2018/7131487. |
2 | LiuZ X,DangW G,LiuQ L,et al. Optimization of clay material mixture ratio and filling process in gypsum mine goaf[J]. International Journal of Mining Science and Technology,2013,23(3): 337-342. |
3 | 李夕兵,刘冰.硬岩矿山充填开采现状评述与探索[J]. 黄金科学技术,2018,26(4): 492-502. |
3 | LiXibing,LiuBing.Review and exploration of current situation of backfill mining in hard rock mines[J].Gold Science and Technology,2018,26(4):492-502. |
4 | SivakuganN,VeenstraR,NaguleswaranN. Underground mine backfilling in Australia using paste fills and hydraulic fills[J]. International Journal of Geosynthetics and Ground Engineering,2015,1(2):18. |
5 | 丁文军,李广辉,丁志浩. 某金矿充填系统优化改造[J]. 黄金科学技术,2016,24(4): 87-91. |
5 | DingWenjun,LiGuanghui,DingZhihao.Optimization of filling system for a gold mine[J].Gold Science and Technology,2016,24(4):87-91. |
6 | GuptaA K,PaulB. A review on utilisation of coal mine overburden dump waste as underground mine filling material:A sustainable approach of mining[J]. International Journal of Mining and Mineral Engineering,2015,6(2): 172-186. |
7 | 王贤来,郑晶晶,张钦礼,等. 充填钻孔内管道磨损的影响因素及保护措施[J]. 矿冶工程,2009,29(5): 9-12. |
7 | WangXianlai,ZhengJingjing,ZhangQinli,et al. Influencing factors on the abrasion of pipelines in backfill drilling and protective measures[J]. Mining and Metallurgical Engineering,2009,29(5): 9-12. |
8 | 张钦礼,郑晶晶,王新民,等. 充填管道磨损形式及机理分析研究[J]. 金属矿山,2009,39(5): 115-118. |
8 | ZhangQinli,ZhengJingjing,WangXinmin,et al. A study of the abrasion form and mechanism of backfilling pipelines[J]. Metal Mine,2009,39(5): 115-118. |
9 | 张德明,王新民,郑晶晶,等. 深井充填钻孔内管道磨损机理及成因分析[J]. 武汉理工大学学报,2010,32(13): 100-105. |
9 | ZhangDeming,WangXinmin,ZhengJingjing,et al. Wear mechanism and causes of backfilling drill-holes pipelines in deep mine[J]. Journal of Wuhan University of Technology,2010,32(13): 100-105. |
10 | 毛明发,王炳文,朱家锐,等. 充填料浆自流输送管道磨损机理研究[J]. 金属矿山,2018,47(4): 178-184. |
10 | MaoMingfa,WangBingwen,ZhuJiarui,et al. Study on wear mechanism of gravity transportation pipeline for backfilling slurry[J]. Metal Mine,2018,47(4): 178-184. |
11 | 梅晓,李兴华,孔贺,等. 膏体充填管道磨损机理分析[J]. 煤炭技术,2016,35(7): 274-276. |
11 | MeiXiao,LiXinghua,KongHe,et al. Analysis on wear mechanism of backfill paste[J]. Coal Technology,2016,35(7): 274-276. |
12 | 薛希龙,王新民,张钦礼. 充填管道磨损风险评估的组合权重与可变模糊耦合模型[J]. 中南大学学报(自然科学版),2016,47(11): 3752-3758. |
12 | XueXilong,WangXinmin,ZhangQinli. An integrated model of combination weights and variable fuzzy on evaluating backfill pipeline wear risk[J]. Journal of Central South University(Science and Technology),2016,47(11): 3752-3758. |
13 | 丁文军,李广辉,丁志浩.某金矿充填系统优化改造[J].黄金科学技术,2016,24(4):87-91. |
13 | DingWenjun,LiGuanghui,DingZhihao.Optimization of filling system for a gold mine[J].Gold Science and Technology,2016,24(4):87-91. |
14 | 叶永飞,张雅楠,李士超,等. 循环载荷下胶结充填体损伤声发射表征[J]. 黄金科学技术,2018,26(6): 819-825. |
14 | YeYongfei,ZhangYanan,LiShichao,et al.Acoustic emission characterization of damage of cemented filling under cyclic loading[J].Gold Science and Technology,2018,26(6):819-825. |
15 | 唐勇波,桂卫华,彭涛,等. PCA和KICA特征提取的的变压器故障诊断模型[J].高压电技术,2014,40(2): 557-563. |
15 | TangYongbo,GuiWeihua,PengTao,et al. Transfomer fault diagnosis model based on PCA and KICA feature extraction[J].High Voltage Engineering,2014,40(2): 557-563. |
16 | 王培良,夏春江. 基于PCA-PDBNs的故障检测与自学习辨识[J]. 仪器仪表学报,2015,36(5): 1147-1154. |
16 | WangPeiliang,XiaChunjiang. Fault detection and self-learning identification based on PCA-PDBNs[J]. Chinese Journal of Scientific Instrument,2015,36(5): 1147-1154. |
17 | 赵琳,边扬,荣建,等. 基于有序Logistic回归的城市人行道服务水平研究[J]. 交通运输系统工程与信息,2014,14(4): 131-138. |
17 | ZhaoLin,BianYang,RongJian,et al. Pedestrian LOS of urban sidewalks based on orderly Logistic regression[J]. Journal of Transportation Systems Engineering and Information Technology,2014,14(4): 131-138. |
18 | 白少布. 基于有序Logistic模型的企业供应链融资模型融资风险预警研究[J]. 经济经纬,2010(6): 66-71. |
18 | BaiShaobu. Research on early warning of financing risk of enterprise supply chain financing model based on ordered Logistic model[J]. Economic Survey,2010(6): 66-71. |
19 | 王瑷玲,石宁,陈欣玉,等. 基于有序Logistic回归的农村院落建设影响因素研究[J]. 农林经济管理学报,2017,16(6): 776-782. |
19 | WangAiling,ShiNing,ChenXinyu,et al. Factors influencing rural courtyard construction based on ordinal Logistic regression[J].Journal of Agro-Forestry Economics and Management,2017,16(6): 776-782. |
20 | 郑晶晶,张钦礼,王新民,等. 充填管道系统失效模式与影响分析(FMEA)及失效影响模糊评估[J]. 中国安全科学学报,2009,19(6): 166-171. |
20 | ZhengJingjing,ZhangQinli,WangXinmin,et al. FMEA analysis of backfilling pipeline system and fuzzy evaluation of failure effects[J].China Safety Science Journal,2009,19(6): 166-171. |
21 | 王新民,王石,鄢德波,等. 基于未确知测度理论的充填管道堵塞风险性评价[J]. 中国安全科学学报,2012,22(4): 151-156. |
21 | WangXinmin,WangShi,YanDebo,et al. Risk assessment on blocking of filling pipeline based on uncertainty measurement theory[J]. China Safety Science Journal,2012,22(4): 151-156. |
/
〈 | 〉 |