收稿日期: 2018-10-29
修回日期: 2019-06-10
网络出版日期: 2019-11-07
基金资助
重庆市科技计划项目基础科学与前沿技术研究专项“动静荷载作用下深部含瓦斯煤体失稳破坏机理研究”(Cstc2018jcyjAX0387)
Research and Application of Artificial False Bottom in Mining of Orebody in Alteration Zone
Received date: 2018-10-29
Revised date: 2019-06-10
Online published: 2019-11-07
针对嵩县山金矿业有限公司主矿体位于矿区构造破碎带内,前期采用上向进路充填采矿法对其进行开采时留下了高品位顶底矿柱的开采难题,矿山提出通过在各中段间施工人工假底来对这部分高品位矿柱进行回收。因此,为保证顶底柱回采稳定性和矿石回收率,建立了人工假底薄“板”力学模型,应用弹性力学理论对其失稳机理进行分析;同时在人工假底厚度确定的情况下采用安全系数法分析了进路宽度与高度对进路稳定性的影响,确定安全合理的进路宽度为3.5~4.0 m,高度为3.0~4.0 m;再对人工假底进行配筋设计,并对金属网在人工假底中不同位置时假底位移及应力场变化进行数值模拟分析,得到最安全合理的铺设位置为人工假底中部。将研究结果应用到工程实践中,结果表明人工假底的应用使矿山顶底柱得到安全高效的回采。
宋恩祥 , 李强 , 张静 , 彭康 . 蚀变带内矿体开采中人工假底的应用研究[J]. 黄金科学技术, 2019 , 27(5) : 722 -730 . DOI: 10.11872/j.issn.1005-2518.2019.05.722
The main orebody of the mining area of Songxian Shanjin Mining Co. Ltd. is located in the M1 structural alteration zone and it is strictly controlled by the structural fracture zone.Its occurrence is basically consistent with the M1 structural alteration zone,which is a moderately stable orebody and due to the roof.The rock mass is broken,and the mining area is mainly developed by the upward approach filling method,so the high-grade top and bottom pillars are left behind.In order to ensure the stability of the stope,the top and bottom columns between the middle sections are effectively recovered,and the utilization rate of the orebody is improved.The mine design shall be constructed with artificial false bottoms after the end of the mining in the middle section,and the top and bottom pillars shall be recovered under the artificial false bottom.In order to ensure the recovery stability and ore recovery rate of the bottom and bottom columns under artificial false bottom,a manual false bottom plate mechanical model was established for the artificial false bottom approach,and the instability mechanism was analyzed by the theory of elastic mechanics.When the two sides of the column are filled with the filling body,the artificial false bottom of the roadway is known as the “soft-supported weak plate” structure,and it is easy to cause bending and tensile failure in the middle of the road top plate;and the safety factor is adopted in the case where the artificial false bottom thickness is determined.The method analyzes the influence of the width and height of the approach on the stability of the approach,and determines the safe and reasonable approach width of 3.5~4.0 m and the height of 3.0~4.0 m.According to the strength requirements and the results of the strength test of the mine backfill,the filling is carried out.The calculation of the reinforcement calculation at the bottom of the body is carried out by using a 1∶8 C-material cemented backing body,and the Φ12 mm steel bar with a mesh size of 300 mm×300 mm can increase the tensile strength of the artificial false bottom.The reinforcement design is carried out at the bottom,and the numerical simulation analysis of the false bottom displacement and the stress field change of the metal mesh at different positions in the artificial false bottom is carried out,and the safest and most reasonable laying position is the middle of the artificial false bottom.The findings applied to engineering practice,the results showed that the application of artificial false bottom of the top-pillar mines safe and effective mining.
1 | 彭康,李夕兵,彭述权,等. 海底下框架式分层充填法开采中矿岩稳定性分析[J]. 中南大学学报(自然科学版),2011,42(11):3452-3458. |
1 | PengKang,LiXibing,PengShuquan,et al. Ore-rock stability of frame stope hierarchical level filling mining method in seabed mining[J].Journal of Central South University(Science and Technology),2011,42(11):3452-3458. |
2 | 彭康,李夕兵,彭述权,等.海下点柱式开采的有限元动态模拟分析[J]. 金属矿山,2009,39(10):59-62. |
2 | PengKang,LiXibing,PengShuquan,et al. FE dynamic simulation analysis of in under-sea point pillar mining [J]. Metal Mine,2009,39(10):59-62. |
3 | 刘志义,甘泽,甘德清,等.近海矿体开采人工假底厚度优化及工程应用[J]. 金属矿山,2016,45(8):54-57. |
3 | LiuZhiyi,GanZe,GanDeqing,et al.Thickness optimization and engineering application of artificial false bottom in offshore ore mining[J].Metal Mine,2016,45(8):54-57. |
4 | 王泽伟,彭康,徐欣,等.胶结充填体下顶底柱进路开采参数优选[J]. 矿冶工程,2014,4(4):11-15. |
4 | WangZewei,PengKang,XuXin,et al.Parameter optimization for pillars robbing under cemented filling body [J]. Mining and Metallurgical Engineering,2014,4(4):11-15. |
5 | 唐俊智,王江波,林洪勇.人工假底假巷在中薄脉金矿中的应用[J]. 黄金科学技术,2008,16(3):45-48. |
5 | TangJunzhi,WangJiangbo,LinHongyong. Application of artificial concrete-bottom and concrete-lane in the thin vein of gold mine[J].Gold Science and Technology,2008,16(3):45-48. |
6 | 马明辉,朱明德,陈自辉,等.三山岛金矿无架腿支护技术研究与应用[J].黄金科学技术,2017,25(5):67-72. |
6 | MaMinghui,ZhuMingde,ChenZihui,et al.Research and application of support technology without legs in Sanshandao gold mine [J]. Gold Science and Technology,2017,25(5):67-72. |
7 | 陈玉山,王立君,尹剑飞,等.无轨机械化盘区点柱式充填采矿法实践[J].黄金科学技术,2002,10(4):7-12. |
7 | ChenYushan,WangLijun,YinJianfei,et al.The practice of mining method for trackless mechanisation panel pillar filling[J]. Gold Science and Technology,2002,10(4):7-12. |
8 | 高谦.地下大跨度采场围岩突变失稳风险预测[J]. 岩土工程学报,2000,22(5):523-526. |
8 | GaoQian.Instability forecast and risk evaluation of the surrounding rock masses for a large space stope [J]. Chinese Journal of Geotechnical Engineering,2000,22(5):523-526. |
9 | TesarikD R,SeymourJ B,YanskeT R.Long-term stability of a backfilled room-and-pillar test section at the Buick Mine,Missouri,USA [J]. International Journal of Rock Mechanics and Mining Sciences,2008,46(7):1182-1196. |
10 | WangX B,YangX B,ZhangZ H,et a1.Dynamic analysis of fault rock burst based on gradient-dependent plasticity and energy criterion[J].Journal of University of Science and Technology Beijing,2004,11(1):5-9. |
11 | 彭康,李夕兵,彭述权,等.基于响应面法的海下框架式采场结构优化选择[J].中南大学学报(自然科学版),2011,42(8):2417-2422. |
11 | PengKang,LiXibing,PengShuquan,et al.Optimization of frame stope structure parameters based on response surface method in under-sea mining[J].Journal of Central South University(Science and Technology),2011,42(8):2417-2422. |
12 | O’HearnB,SwanG.The use of models in sill mat design at Falconbridge[C]//Innovations in Mining Backfill Technology:Proceedings of the 4th International Symposium on Mining with Backfill.Brookfield,USA:AA Balkema Publishers,1989:139-146. |
13 | 顾伟,张立亚,谭志祥,等.基于弹性薄板模型的开放式充填顶板稳定性研究[J].采矿与安全工程学报,2013,30(6):886-891. |
13 | GuWei,ZhangLiya,TanZhixiang,et al.Study on roof stability of open backfilling based on elastic plate model [J]. Journal of Mining & Safety Engineering,2013,30(6):886-891. |
14 | 范文录,李夕兵,周子龙.基于可靠度理论的钢筋混凝土假顶强度确定与配筋设计研究[J].矿冶工程,2013,33(4):30-35. |
14 | FanWenlu,LiXibing,ZhouZilong.Strength determination for reinforced concrete false roof and reinforcement design based on reliability theory[J].Mining and Metallurgical Engineering,2013,33(4):30-35. |
15 | 尚雪义,李夕兵,彭康,等.基于安全系数和可靠度的极破碎矿体进路优化[J].中南大学学报(自然科学版),2016,47(7):2390-2397. |
15 | ShangXueyi,LiXibing,PengKang,et al.Optimization of drift in extremely fractured ore-body based on safety coefficient and reliability analysis [J]. Journal of Central South University(Science and Technology),2016,47(7):2390-2397. |
16 | 李夕兵,范文录,胡国宏.急倾斜破碎矿体采矿方法改进与顶板再造设计[J].科技导报,2012,30(13):44-48. |
16 | LiXibing,FanWenlu,HuGuohong.Improvement of steep and fractured ore-body mining method and design of re-construction of sub-top[J].Science and Technology Review,2012,30(13):44-48. |
17 | 中华人民共和国建设部.建筑结构可靠度设计统一标准:GB50068-2018[S].北京:中国建筑工业出版社,2018. |
17 | People's Republic of China Ministry of Consturction.Uniform Standard for reliability of building structures:GB50068-2018[S].Beijing:China Building Industry Press,2018. |
18 | HughesP,PakalnisR,CaceresC,et al.Numerical modeling of paste sills in underhand cut & fill stopes[C]//Third International Seminar on Deep and High Stress Mining.Quebec:Canadian Institute of Mining,Metallurgy and Petroleum,2006:1-10. |
19 | 李夕兵,刘志祥,彭康,等.金属矿滨海基岩开采岩石力学理论与实践[J].岩石力学与工程学报,2010,29(10):1945-1953. |
19 | LiXibing,LiuZhixiang,PengKang,et al.Theory and practice of rock mechanics related to exploitation of undersea metal mine [J].Chinese Journal of Rock Mechanics and Engineering,2010,29(10):1945-1953. |
20 | PengK,YinX Y,YinG Z,et al.Galerkin solution of Winkler foundation-based irregular Kirchhoff plate model and its application in crown pillar optimization[J].Journal of Central South University,2016,23(5):1253-1263. |
21 | MatsuiT,SanK C.Finite element slope stability analysis by sheer strength reduction technique [J].Soils and Foundations,1992,32(1):59-70. |
/
〈 | 〉 |