收稿日期: 2018-04-14
修回日期: 2018-11-07
网络出版日期: 2019-04-30
基金资助
河南省高校重点科研项目“地热新能源合理开采涉及的气—水—岩三态平衡机制研究”(编号:18A440014)、河南理工大学博士基金项目“高静载高温状态下深部岩石动力学特性研究”(编号:672707)、河南省重点研发与推广专项(科技攻关)项目“气液自行循环开采高温岩体地热能技术研究” (编号:192102310247)和深井瓦斯抽采与围岩控制技术国家地方联合工程实验室开放研究基金项目“高静载卸荷过程中受冲击小扰动时煤岩的破坏机理”(编号:SJF201803)
Deformation Characteristics of the Surrounding Rock in Deep Mining Roadway Under Dynamic Disturbance
Received date: 2018-04-14
Revised date: 2018-11-07
Online published: 2019-04-30
以冬瓜山铜矿井下900 m深处的出矿巷道作为研究对象,基于“隔一采一充一”阶段凿岩、分段崩落的回采方案,利用FLAC3D数值模拟软件研究了静动态开挖过程中出矿巷道围岩的变形特征。模拟相关岩体力学参数由三轴压缩及频繁冲击扰动试验数据折减获得,采用Mohr-Coulomb模型进行静态开挖分析,结合Strain-Softening模型进行动态扰动影响模拟分析。研究结果表明:爆破产生的扰动促使围岩变形加剧,但不会改变静态开挖时围岩变形演化的规律;开挖时巷道周边产生应力卸荷现象,且顶板出现拉应力,靠近采场巷道两帮应力离散性大,造成顶板易产生拉伸破坏,靠近采场巷道两帮易发生片帮;结合深部出矿巷道实际稳定情况,推测巷道顶板及靠近采场部位易产生破坏,需加强支护,其余部位稳定性相对较好。
王春 , 王成 , 熊祖强 , 程露萍 , 王怀彬 . 动力扰动下深部出矿巷道围岩的变形特征[J]. 黄金科学技术, 2019 , 27(2) : 232 -240 . DOI: 10.11872/j.issn.1005-2518.2019.02.232
When deep rock mass is in a complex geological and mechanical environment, factors such as high stress and blasting disturbance usually affect the stability of surrounding rock in deep roadway directly.At present,the research analysis to deformation characteristics of surrounding rock in deep mine roadway is still inadequate,especially the actual destruction of roadway surrounding rock.So it is significant to study deformation characteristics of surrounding rock under dynamic disturbance, which can provide theoretical reference for supporting deep roadway surrounding rock.Through the investigation and analysis of engineering geological conditions of Dongguashan copper mine and occurrence conditions of No.Ⅰ orebody, the study on deformation regularity of roadway surrounding rock under static and dynamic load was conducted, and the numerical model is established according to the mining scheme.Therefore,taking the mine roadway of Dongguashan copper mine in the downhole 900 m deep as the research object,FLAC3D numerical simulation software was used to analyze the deformation characteristics of surrounding rock in the mining roadway, which based on the stopping scheme of the stage drilling block caving about “one charge one by one”.At first, the static and dynamic mechanical parameters of marble, skarn, serpentine, siltstone were measured through the indoor rock mechanics test, then the static and dynamic parameters of rock mass were obtained based on the generalized hoek-brown criterion. That is also to say, the simulated mechanical parameters of rock mass were obtained by reduced triaxial compression and frequent impact perturbation test data.After the establishment of the numerical calculation model, the Mohr-Coulomb model was used for static excavation analysis, and the dynamic disturbance impact simulation analysis was carried out with the Strain-Softening model, both of them were used to analyze the stress evolution and displacement evolution in roof and floor of roadway as well as both sides of surrounding rock.At last, the accuracy of the numerical simulation results was analyzed based on the actual failure of surrounding rock in the deep excavation of Dongguashan copper mine.The results show that the static and dynamic softening parameters of deep rock mass are obtained by reduction,based on test data of triaxial compression and frequent disturbance,which can be used as the basic parameters of numerical simulation analysis.What’s more, stress unloading occurred around the roadway, tensile stress appeared on the roof, while the stress on the floor was relatively small.The stress dispersion of the roadway side near the stope is greater than other side, and the change trend of stress isn’t obvious during dynamic disturbance.With the proceeding of excavation, the displacement increment of the roadway roof and the side roadway near the stope is larger than the side roadway deviated from the stope.At the same time, the roadway floor appears stable period, that is, the displacement does not change.Combined with the actual failure situation of surrounding rock in deep mining roadway, it can be speculated that roadway roof and the side roadway near the stope are prone to damage.As a result,the support should be strengthened and the rest parts are relatively stable.
1 | 温颖远,牟宗龙,易恩兵,等.动力扰动下不同硬度煤层巷道围岩响应特征研究[J].采矿与安全工程学报,2013,30(4):555-559. |
1 | WenYingyuan,MuZonglong,YiEnbing,et al.The response features of roadway surrounding rock in different hardness coal seams under dynamic disturbance[J].Journal of Mining and Safety Engineering,2013,30(4):555-559. |
2 | 李夕兵,廖九波,赵国彦,等.动力扰动下高应力巷道围岩动态响应规律[J].科技导报,2012,30(22):48-54. |
2 | LiXibing,LiaoJiubo,ZhaoGuoyan,et al.Dynamic response of surrounding rock in highly-stressed tunnel under dynamic disturbance[J].Science and Technology Review,2012,30(22):48-54. |
3 | 吕文玉,孟宪锐.冲击矿压及岩石巷道卸压爆破影响参数研究[J].中国矿业,2009,18(2):72-73,85. |
3 | WenyuLü,MengXianrui.Research on the impulsion pressure and influence parameters of distress blasts in rock roadway[J]. China Mining Magazine,2009,18(2):72-73,85. |
4 | 谭海文,吴仲雄,马瑞军.岩体节理裂隙对巷道掘进爆破影响的研究与实践[J].金属矿山,2007,37(5):42-45. |
4 | TanHaiwen,WuZhongxiong,MaRuijun.Research on effect of rock mass joints and fissures on blasting in tunneling and its practice[J].Metal Mine,2007,37(5):42-45. |
5 | 王春,唐礼忠,程露萍,等.一维静载与频繁扰动共同作用下含铜蛇纹岩动力学特性[J].振动与冲击,2016,35(9):219-226. |
5 | WangChun,TangLizhong,ChengLuping,et al. Dynamic characteristics of copper-bearing serpentine under combined action of one-dimensional static load and frequent disturbance[J]. Journal of Vibration and Shock,2016,35(9):219-226. |
6 | 唐礼忠,王春,程露萍,等.一维静载及循环冲击共同作用下矽卡岩力学特性试验研究[J].中南大学学报(自然科学版),2015,46(10):3898-3906. |
6 | TangLizhong, WangChun, ChengLuping,et al.Experimental study of mechanical characteristics of skarn under one-dimensional coupled static and cyclic impact loads[J].Journal of Central South University (Science and Technology) ,2015,46(10):3898-3906. |
7 | 李夕兵,周子龙,叶州元,等.岩石动静组合加载力学特性研究[J].岩石力学与工程学报,2008,27(7):1387-1395. |
7 | LiXibing,ZhouZilong,YeZhouyuan,et al.Study of rock mechanical characteristics under coupled static and dynamic loads[J].Chinese Journal of Rock Mechanics and Engineering,2008,27(7):1387-1395. |
8 | 李夕兵,宫凤强,ZhaoJ,等.一维动静组合加载下岩石冲击破坏试验研究[J].岩石力学与工程学报,2010,29(2):251-260. |
8 | LiXibing,GongFengqiang,ZhaoJ,et al.Test study of impact failure of rock subjected to one-dimensional coupled static and dynamic loads[J].Chinese Journal of Rock Mechanics and Engineering,2010,29(2):251-260. |
9 | 闫长斌,徐国元,李夕兵.爆破震动对采空区稳定性影响的FLAC3D分析[J].岩石力学与工程学报,2005,24(16):2894-2899. |
9 | YanChangbin,XuGuoyuan,LiXibing.Stability analysis of mined-out areas influenced by blasting vibration with FLAC3D[J].Chinese Journal of Rock Mechanics and Engineering,2005,24(16):2894-2899. |
10 | 尚振华,唐绍辉,焦文宇,等.基于 FLAC3D模拟的大规模采空区破坏概率研究[J].岩土力学,2014,35(增2):3000-3006. |
10 | ShangZhenhua,TangShaohui,JiaoWenyu,et al.Failure probability of goaf in large-scale based on simulation of FLAC3D[J].Rock and Soil Mechanics,2014,35(Supp.2):3000-3006. |
11 | 吴启红,唐佳,杨有莲.某矿山多层采空区群稳定性的 FLAC3D数值分析[J].矿冶工程,2011,31(6):13-20. |
11 | WuQihong,TangJia,YangYoulian.FLAC3D -based numerical analysis for stability of multilayer goafs in a mine[J].Mining and Metallurgical Engineering,2011,31(6):13-20. |
12 | 朱万成,左宇军,尚世明,等.动态扰动触发深部巷道发生失稳破裂的数值模拟[J].岩石力学与工程学报,2007,26(5):915-921. |
12 | ZhuWancheng,ZuoYujun,ShangShiming,et al.Numerical simulation of instable failure of deep rock tunnel triggered by dynamic disturbance[J]. Chinese Journal of Rock Mechanics and Engineering,2007,26(5):915-921. |
13 | 唐春安,李连崇,李常文,等.岩土工程稳定性分析 RFPA 强度折减法[J].岩石力学与工程学报,2006,25(8):1522-1530. |
13 | TangChun’an,LiLianchong,LiChangwen,et al.RFPA strength reduction method for stability analysis of geotechnical engineering[J].Chinese Journal of Rock Mechanics and Engineering,2006,25(8):1522-1530. |
14 | 龙源,冯长根,徐全军,等.爆破地震波在岩石介质中传播特性与数值计算研究[J].工程爆破,2000,6(3):1-7. |
14 | LongYuan,FengChanggen,XuQuanjun,et al.Study on propagation characteristics of blasting seismic waves in a rock medium and numerical calculation[J].Engineering Blasting,2000,6(3):1-7. |
15 | 李占金,杨美宏,孙文诚,等.基于FLAC3D的深部大规模开采围岩稳定性分析[J].矿业研究与开发,2017,37(6):90-93. |
15 | LiZhanjin,YangMeihong,SunWencheng,et al.Stability analysis of surrounding rock under deep and large-scale mining based on FLAC3D[J].Mining Research and Development,2017,37(6):90-93. |
16 | 林慧立,石永奎.深部构造复杂区大断面硐室群围岩稳定性模拟分析[J].煤炭学报,2011,36(10):1619-1623. |
16 | LinHuili,ShiYongkui.Simulation on stability of surrounding rock of large section chambers in deep structural complex areas[J].Journal of China Coal Society,2011,36(10):1619-1623. |
17 | 孙红月,尚岳全,张春生.大型地下洞室围岩稳定性数值模拟分析[J].浙江大学学报(工学版),2004,38(1):70-73. |
17 | SunHongyue,ShangYuequan,ZhangChunsheng.Numerical modeling analysis for surrounding rockmass stability of large underground cavities[J].Journal of Zhejiang University(Engineering Science),2004,38(1):70-73. |
18 | 常聚才,谢广祥.深部巷道围岩力学特征及其稳定性控制[J].煤炭学报,2009,34(7):881-886. |
18 | ChangJucai,XieGuangxiang.Mechanical characteristics and stability control of rock roadway surrounding rock in deep mine[J].Journal of China Coal Society,2009,34(7):881-886. |
19 | 唐礼忠,高龙华,王春,等.动力扰动下含软弱夹层巷道围岩稳定性数值分析[J].采矿与安全工程学报,2016,33(1):63-69. |
19 | TangLizhong,GaoLonghua,WangChun,et al.Numerical analysis of stability of roadway surrounding rock with weak interlayer under dynamic disturbance[J].Journal of Mining and Safety Engineering,2016,33(1):63-69. |
20 | 肖猛,丁德馨,莫勇刚.软岩巷道围岩稳定性的 FLAC3D数值模拟研究[J].矿业研究与开发,2007,27(1):73-75. |
20 | XiaoMeng,DingDexin,MoYonggang.Numerical simulation of surrounding rock stability of soft rock roadway based on FLAC3D[J].Mining Research and Development,2007,27(1):73-75. |
21 | 孙书伟,林杭,任连伟.FLAC 3D在岩土工程中的应用[M].北京:中国水利水电出版社,2011:63-95. |
21 | SunShuwei,LinHang,RenLianwei.Application of FLAC3D in Geotechnical Engineering[M].Beijing:China Water and Power Press,2011:63-95. |
22 | 武建力.冬瓜山铜矿频繁爆破开采下围岩变形与破坏机理研究[D].长沙:中南大学,2014:25-30. |
22 | WuJianli.Study on the Deformation and Failure Mechanism of Dongguashan Copper Mine’s Surrounding Rock Under Frequent Vibrations[D].Changsha:Central South University,2014:25-30. |
/
〈 | 〉 |