img

QQ群聊

img

官方微信

  • CN 62-1112/TF 
  • ISSN 1005-2518 
  • 创刊于1988年
高级检索
采选技术与矿山管理

基于波速测量的岩石储能量化表征方法研究

  • 郭春志 ,
  • 马春德 ,
  • 周亚楠 ,
  • 刘泽霖 ,
  • 龙珊
展开
  • 1. 中南大学资源与安全工程学院,湖南 长沙 410083
    2. 中南大学高等研究中心,湖南 长沙 410083
郭春志(1993-),男,河南项城人,硕士研究生,从事岩土力学研究工作。17308416105@163.com|马春德(1976-),男,辽宁丹东人,副教授,博士,从事岩体力学与地应力测量方面的研究工作。cdma@csu.edu.cn

收稿日期: 2018-05-15

  修回日期: 2018-09-18

  网络出版日期: 2019-04-30

基金资助

新疆维吾尔自治区重大科技专项“东天山复杂地质特长公路隧道建设关键工程研究与应用——特长公路隧道机械化安全快速施工技术研究”(编号:2018A03003-2)和国家重点研发计划项目“深部岩体力学与开采理论”之“深部高应力诱导与能量调控理论”(编号:2016YFC0600706)

Research on Quantitative Characterization Method of Rock Energy Storage Based on Wave Velocity Measurement

  • Chunzhi GUO ,
  • Chunde MA ,
  • Yanan ZHOU ,
  • Zelin LIU ,
  • Shan LONG
Expand
  • 1. School of Resources and Safety Engineering, Central South University, Changsha 410083, Hunan, China
    2. Advanced Research Center, Central South University, Changsha 410083, Hunan, China

Received date: 2018-05-15

  Revised date: 2018-09-18

  Online published: 2019-04-30

摘要

为了定量化表征岩石储能,选择3类典型岩石(强度较低的红砂岩、中等强度的大理岩和坚硬的花岗岩),在弹性区间内对其压缩载荷(或应力)与纵波波速之间的随动关系进行测试研究,并根据其应力—应变特征曲线,计算出应力与存储能量之间的定量关系,建立以应力为桥梁的“波速—应力—储能”的定量化表征方法。结果表明:在3种典型岩石弹性阶段内,其纵波波速与压缩应力均呈现出明显的线性关系;压缩应力与岩石储能之间基本符合复合幂指数关系;根据卸载波速—应力、应力—弹性储能所建立的模型,可以得到卸载波速与弹性储能之间的对应函数关系,实现了用波速定量化表征岩石储能的目的,即获得了一种较为可行的用波速定量化表征岩石储能的测试技术方法。测试结果还表明:硬岩比软岩更适合采用此方法来定量化表征存储的能量,其精度和准确度更高。

本文引用格式

郭春志 , 马春德 , 周亚楠 , 刘泽霖 , 龙珊 . 基于波速测量的岩石储能量化表征方法研究[J]. 黄金科学技术, 2019 , 27(2) : 223 -231 . DOI: 10.11872/j.issn.1005-2518.2019.02.223

Abstract

The underground rock mass stores a large amount of energy,disasters such as rock bursts will occur under certain conditions.The benign application of rock energy storage can not only effectively reduce the sudden release of energy,but also make use of rock energy.But there are still a series of technical problems to be solved in order to make it work.One of the key issues is how to accurately quantify the energy storage of deep rock mass.This study only qualitatively and quantitatively studies the elastic range of rock,using low-intensity red sandstone (sedimentary rock),medium-strength marble (metamorphic rock) and high-strength granite (magmatic rock).The basic idea of ??this study is to explore the relationship between wave velocity and stress in the elastic phase of rock.The model is used to characterize the corresponding stress value by wave velocity,and then explore the relationship between stress and the corresponding energy density.The model uses stress to characterize the energy stored in the rock,and then compares the energy value obtained by the model with the actual energy value to verify the method of characterizing energy with wave velocity.The test results show that the longitudinal wave velocity and the compressive stress show a linear relationship in the three typical rock elastic stages,and the compressive stress and the rock energy storage basically conform to the complex power exponential relationship.The results also show that the theoretical value is not much different from the real value,the error is small,and the hard rock is more suitable than soft rock to be quantified the stored energy with this method,with higher precision and accuracy.In this paper,through the uniaxial repeated loading and unloading test and calculation of the typical rock specimens of marble,granite and red sandstone in the elastic range,the following conclusions are drawn: The three waves exhibit wave velocity with increasing stress.However,when the stress is 30% of the maximum stress,the wave velocity growth of the three rocks is relatively uniform.When the stress exceeds 30% of the maximum stress,the growth rate of marble and granite is still consistent,while the rate of growth of red sandstone is steep.Increase the phenomenon. The wave velocity and stress of the three rocks accord with the linear model.The accuracy of the red sandstone is lower than that of marble and granite.The total energy and elastic energy of the granite are larger than that of marble and red sandstone.The red sandstone has higher dissipative energy than marble and granite. According to the function of unloading wave velocity-stress and stress-elasticity,the wave velocity-elastic energy model is constructed and verified,the overall effect is better,and the accuracy and accuracy of hard rock are higher than that of soft rock.

参考文献

1 ZhangZ Z,GaoF.Research on nonlinear characteristics of rock energy evolution under uniaxial compression[J].Chinese Journal of Rock Mechanics and Engineering,2012,31(6):1198-1207.
2 郭建强,刘新荣,王军保,等.基于弹性应变能的岩石强度准则[J].岩土力学,2016,37(增2):129-136.
2 GuoJianqiang,LiuXinrong,WangJunbao,et al.Strength criterion of rock based on elastic strain energy[J].Rock and Soil Mechanics,2016,37(Supp.2):129-136.
3 GuoW,WangL,YangD Y.Rock damage research based on the energy principles[J].Applied Mechanics and Materials,2011(87):238-242.
4 TangA J,ShiC G,WangY,et al.Energy characteristics of brittle rock in failure process[J].Applied Mechanics and Materials,2014,580-583:260-263.
5 高红,郑颖人,冯夏庭.岩石材料能量屈服准则研究[J].岩石力学与工程学报,2007,26(12):2437-2443.
5 GaoHong,ZhengYingren,FengXiating.Study on energy yield criterion of rock materials[J].Rock Mechanics and Rock Engineering,2007,26(12):2437-2443.
6 丛宇,王在泉,郑颖人,等.不同卸荷路径下大理岩破坏过程能量演化规律[J].中南大学学报(自然科学版),2016,47(9):3140-3147.
6 CongYu,WangZaiquan,ZhengYingren,et al.Energy evolution law of marble failure under different unloading paths[J].Journal of Central South University (Science and Technology),2016,47(9):3140-3147.
7 李果,周承景,张勇,等.地下工程岩爆研究现状综述[J].水利水电科技进展,2013,33(3):77-84.
7 LiGuo,ZhouChengjing,ZhangYong,et al.Review of rockburst in underground engineering[J].Advances in Science and Technology of Water Resources,2013,33(3):77-84.
8 张传庆,卢景景,陈珺,等.岩爆倾向性指标及其相互关系探讨[J].岩土力学,2017,38(5):1397-1404.
8 ZhangChuanqing,LuJingjing,ChenJun,et al.Discussion on rock burst proneness indexes and their relation[J].Geomechanics,2017,38(5):1397-1404.
9 杨键,王连俊.岩爆机制声发射试验研究[J].岩石力学与工程学报,2005,24(20):3796-3802.
9 YangJian,WangLianjun.Study on mechanism of rock burst by acoustic emission testing[J].Chinese Journal of Rock Mechanics and Engineering,2005,24(20):3796-3802.
10 CaiM,KaiserP K,MoriokaH.FLAC/PEC coupled numerical simulation of AE in large-scale underground excavations[J].International Journal of Rock Mechanics and Mining Sciences,2007,44(4):550-564.
11 陈祥,祁小博,蔡新滨,等.可拓综合评价方法在岩爆判别中的应用[J].北京交通大学学报,2009,33(1):99-108.
11 ChenXiang,QiXiaobo,CaiXinbin,et al.Application of extension comprehensive evaluation method in rockburst discrimination[J].Journal of Beijing Jiaotong University,2009,33(1):99-108.
12 李夕兵,姚金蕊,杜坤.高地应力硬岩矿山诱导致裂非爆连续开采初探——以开阳磷矿为例[J].岩石力学与工程学报,2013,32(6):1101-1111.
12 LiXibing,YaoJinrui,DuKun.Preliminary study for induced fracturing and non-explosive continuous mining in high-geostress hard rock mine:A case study of Kaiyang phosphate mine[J].Chinese Journal of Rock Mechanics and Engineering,2013,32(6):1101-1111.
13 李夕兵,宫凤强,杜坤,等.高应力岩体动力扰动下发生岩爆的试验研究进展报告[J].科技创新导报,2016(15):173.
13 LiXibing,GongFengqiang,DuKun,et al.Rockburst experimental study of rock mass with high stress under dynamic disturbance[J].Science and Technology Innovation Herald,2016(15):173.
14 梁昌玉,李晓,王声星,等.岩石单轴压缩应力—应变特征的率相关性及能量机制实验研究[J].岩石力学与工程学报,2012,31(9):1830-1938.
14 LiangChangyu,LiXiao,WangShengxing,et al.Experimental investigations on rate-dependent stress-strain characteristics and energy mechanism of rock under uniaxial compression[J].Chinese Journal of Rock Mechanics and Engineering,2012,31(9):1830-1938.
15 杨圣奇,徐卫亚,苏承东.大理岩三轴压缩变形破坏与能量特征研究[J].工程力学,2007,24(1):136-142.
15 YangShengqi,XuWeiya,SuChengdong.Study on the deformation failure and energy properties of marble specimen under triaxial compression[J].Engineering Mechanics,2007,24(1):136-142.
16 许江,张媛,杨红伟,等.循环孔隙水压力作用下砂岩变形损伤的能量演化规律[J].岩石力学与工程学报,2011,30(1):141-148.
16 XuJiang,ZhangYuan,YangHongwei,et al.Energy evolution law of deformation and damage of sandstone under cyclic pore water pressure[J].Chinese Journal of Rock Mechanics and Engineering,2011,30(1):141-148.
17 蔡美峰,王金安,王双红.玲珑金矿深部开采岩体能量分析与岩爆综合预测[J].岩石力学与工程学报,2001,20(1):38-42.
17 CaiMeifeng,WangJin’an,WangShuanghong.Analysis on energy distribution and prediction of rock burst during deep mining excavation in Linglong gold mine[J].Chinese Journal of Rock Mechanics and Engineering,2001,20(1):38-42.
18 李高勇.砂岩的波速与应力实时同向相关性研究[D].兰州:兰州大学,2013:16-17.
18 LiGaoyong.Research on Correlation Between Velocity and Stress in Sandstone in Real Time[D].Lanzhou:Lanzhou University,2013:16-17.
19 张志镇,高峰.单轴压缩下红砂岩能量演化试验研究[J].岩石力学与工程学报,2012,31(5):953-962.
19 ZhangZhizhen,GaoFeng.Experimental research on energy evolution of red sandstone samples under uniaxial compression[J].Chinese Journal of Rock Mechanics and Engineering,2012,31(5):953-962.
文章导航

/