img

QQ群聊

img

官方微信

  • CN 62-1112/TF 
  • ISSN 1005-2518 
  • 创刊于1988年
高级检索
采选技术与矿山管理

多元统计分析在滨海矿区水源识别中的应用——以三山岛金矿为例

  • 刘国伟 ,
  • 马凤山 ,
  • 郭捷 ,
  • 杜云龙 ,
  • 侯成录 ,
  • 李威
展开
  • 1. 中国科学院地质与地球物理研究所,中国科学院页岩气与地质工程重点实验室,北京 100029
    2. 中国科学院地球科学研究院,北京 100029
    3. 中国科学院大学,北京 100049
    4. 山东黄金矿业(莱州)有限公司三山岛金矿,山东 莱州 261442
刘国伟(1991-),男,山东菏泽人,博士研究生,从事矿山水文地质、工程地质研究工作。l1014893489@163.com|马凤山(1964-),男,河北吴桥人,研究员,博士生导师,从事地质工程与地质灾害研究工作。fsma@mail.iggcas.ac.cn

收稿日期: 2018-07-31

  修回日期: 2018-11-01

  网络出版日期: 2019-04-30

基金资助

国家重点研发计划项目“黄渤海不同类型海岸带海水入侵发生机理研究”(编号:2016YFC0402802)和国家自然科学基金重点项目“海底采矿对地质环境的胁迫影响与致灾机理”(编号:41831293)

Application of Multivariate Statistical Analysis to Identify Water Source in Coast Mine Area:As Example of Sanshandao Gold Mine

  • Guowei LIU ,
  • Fengshan MA ,
  • Jie GUO ,
  • Yunlong DU ,
  • Chenglu HOU ,
  • Wei LI
Expand
  • 1. Key Laboratory of Shale Gas and Geoengineering,Institute of Geology and Geophysics,Chinese Academy of Sciences,Beijing 100029,China
    2. Institutions of Earth Science,Chinese Academy of Sciences,Beijing 100029,China
    3. University of Chinese Academy of Sciences,Beijing 100049,China
    4. Sanshandao Gold Mine,Shandong Gold Mining(Laizhou)Co. ,Ltd. ,Laizhou 261442,Shandong,China

Received date: 2018-07-31

  Revised date: 2018-11-01

  Online published: 2019-04-30

摘要

海底矿山突水是矿山开采亟待解决的问题,通过对矿山巷道水的研究,能够划分出矿山突水水源类型,进而对突水可能性作出预测。以山东三山岛金矿西山矿区地下水系统为例,对其31个水样的水化学资料进行多元统计分析研究。利用因子分析法对存在相关关系的变量进行空间降维处理,找出能够反映大于90%水样水化学信息的公共正交因子,以其作为系统聚类变量。运用系统聚类并结合实际地下水性质,将研究区地下水划分为典型的2类,然后建立矿区水源的Bayes线性模型,并对其进行验证。通过因子分析法和系统聚类分析法得出,-375 m中段涌水水源划分为2种类型,并得出2种具体的判别函数。结果表明:多元统计方法判别水源具有快速、准确且经济的特点。

本文引用格式

刘国伟 , 马凤山 , 郭捷 , 杜云龙 , 侯成录 , 李威 . 多元统计分析在滨海矿区水源识别中的应用——以三山岛金矿为例[J]. 黄金科学技术, 2019 , 27(2) : 207 -215 . DOI: 10.11872/j.issn.1005-2518.2019.02.207

Abstract

Xishan gold mine is subordinate to the Sanshandao gold mine and located in the coastal area of Laizhou Bay,Laizhou City,Shandong Province.In terms of geotectonic,it is located in the western part of the second up-warping zone of the Neocathaysian structural system,which is also Sanshandao-Cangshang fracture of the eastern side of Yishu deep facture.Xishan gold mine has been exploited in under the Bohai sea.Submarine mine water inrush has become an urgent problem to be solved in mine mining.The research on subway water can classify the types of mine groundwater and then predict the possibility of water inrush.Taking groundwater system of Sanshandao gold mine for example,hydrochemical data of 31 water samples was chosen to study with multivariate statistical analysis methods.By using factor analysis,it can reduce the spatial dimension of many variables with correlation relationship,and then identify principle factors which represent over ninety percent information of hydrochemical data.Hierarchical clustering analysis(HCA)uses these principle factors as clustering variables.HCA combined with actual groundwater quality divided the studied groundwater into 2 classic groups,then established and validated Fisher identification model.Through FA and HCA,the groundwater of -375 m subway were divided into two types which all have a specific discriminant function could determine which type of water is.The results represent that the water samples were divided into two typical M1 and M2 by factor analysis combined with principle component analysis.Among the 31 water samples,three of them were discriminated wrong,and the correct rate of discriminant reached 90.3%.Stepwise discriminant analysis and factor analysis were combined to process the seven conventional ions data.Bayes linear discriminant function and function values from 1740 exploration line to 2740 exploration line in -375 m sublevel was obtained.Bayes linear function discriminant results are completely consistent with the results of the factor analysis method,and the two selected discriminant water samples also agree.The consistency of the discriminant results shows that the factor analysis method and the stepwise analysis method are mutually verified.A multivariate statistical method was combined to obtain a quantitative Bayes linear discriminant function,which was applied to the recognition of the source type in the mining area.It was only necessary to know the ion concentration of the corresponding variable,and the water sample type could be determined by substituting it.This method has the characters of accurate,fast,and economical.

参考文献

1 ChristophersenN,HooperR P.Multivariate analysis of stream water chemical data:The use of principal components analysis for the end‐member mixing problem[J]. Water Resources Research,1992,28(1):99-107.
2 LaaksoharjuM,Sk?rmanC,Sk?rmanE.Multivariate mixing and mass balance (M3) calculations,a new tool for decoding hydrogeochemical information[J].Applied Geochemistry,1999,14(7):861-871.
3 DoctorD H,AlexanderE C,Petri?M,et al.Quantification of karst aquifer discharge components during storm events through end-member mixing analysis using natural chemistry and stable isotopes as tracers[J]. Hydrogeology Journal,2006,14(7):1171-1191.
4 CarreraJ,Vázquez-Su?éE,CastilloO,et al.A methodology to compute mixing ratios with uncertain end‐members[J].Water Resources Research,2004,40(12):3687-3696.
5 GülerC,ThyneG D.Delineation of hydrochemical facies distribution in a regional groundwater system by means of fuzzy c‐means clustering[J].Water Resources Research,2004,40(12):87.
6 LongA J,ValderJ F.Multivariate analyses with end-member mixing to characterize groundwater flow:Wind Cave and associated aquifers[J].Journal of Hydrology,2011,409(1/2):315-327.
7 刘杰刚,徐新启,时艳茹,等.多元统计分析模型在矿井突水水源判别中的应用[J].中国煤炭,2013,39(2):101-104.
7 LiuJiegang,XuXinqi,ShiYanru,et al. Application of multivariate statistical model to identification of water inrush source in coal mines[J].China Coal,2013,39(2):101-104.
8 李克蓬,马凤山,张洪训,等.海底金矿矿坑涌水水源判识及演化研究[J].工程地质学报,2017,25(1):180-189.
8 LiKepeng,MaFengshan,ZhangHongxun,et al.Recharge source identification and evolution of inflowing water in a seabed gold mine[J].Journal of Engineering Geology,2017,25(1):180-189.
9 张好,姚多喜,鲁海峰,等.主成分分析与Bayes判别法在突水水源判别中的应用[J].煤田地质与勘探,2017,45(5):87-93.
9 ZhangHao,YaoDuoxi,LuHaifeng,et al.Application of principal component analysis and Bayes discrimination approach in water source identification[J].Journal of Coal Geology and Exploration,2017,45(5):87-93.
10 刘春平,郑长城,谭红军.矿坑涌水量的地质分析与模拟——以三山岛金矿为例[J].工程地质学报,1994,2(3):81-90.
10 LiuChunping,ZhengChangcheng,TanHongjun.The geological analysis and modeling of mining water flow—as an example of Sanshan island gold mine[J].Journal of Engineering and Geology,1994,2(3):81-90.
11 FristonK J,FrithC D,LiddleP F,et al. Functional connectivity:The principal-component analysis of large (PET) data sets[J]. Journal of Cerebral Blood Flow and Metabolism:Official Journal of the International Society of Cerebral Blood Flow and Metabolism,1993,13(1):5-14.
12 ShresthaS,KazamaF.Assessment of surface water quality using multivariate statistical techniques:A case study of the Fuji river basin,Japan[J].Environmental Modelling and Software,2007,22(4):464-475.
13 SalifuA,PetrusevskiB,GhebremichaelK,et al.Multivariate statistical analysis for fluoride occurrence in groundwater in the Northern region of Ghana[J].Journal of Contaminant Hydrology,2012,140/141:34-44.
14 OttoM.Multivariate methods[M]//KellnerR,MermetJ M,OttoM,et al.Analytical Chemistry.Weinheim:Wiley VCH,1998.
15 向东进.实用多元统计分析[M].武汉:中国地质大学出版社,2005.
15 XiangDongjin.Applied Multivariate Statistical Analysis[M].Wuhan:China University of Geosciences Press,2009.
16 GuH Y,MaF S,GuoJ,et al.A spatial mixing model to assess groundwater aynamics affected by mining in a coastal fractured aquifer,China[J].Mine Water and the Environment,2018,37(2):405-420.
文章导航

/