img

QQ群聊

img

官方微信

高级检索

黄金科学技术 ›› 2022, Vol. 30 ›› Issue (4): 550-558.doi: 10.11872/j.issn.1005-2518.2022.04.005

• 采选技术与矿山管理 • 上一篇    

基于L型回弹仪的岩石力学特性试验研究

徐先锋(),邢鹏飞,汪泳,王岁红   

  1. 核工业井巷建设集团有限公司,浙江 湖州 313000
  • 收稿日期:2021-12-22 修回日期:2022-03-31 出版日期:2022-08-31 发布日期:2022-10-31
  • 作者简介:徐先锋(1970-),男,浙江湖州人,高级工程师,从事城市隧道开挖等岩石力学研究工作。363328532@qq.com

Experimental Study on Rock Mechanical Properties Based on L-Type Rebound Instrument

Xianfeng XU(),Pengfei XING,Yong WANG,Suihong WANG   

  1. Nuclear Industry Jingxiang Construction Group Co. ,Ltd. ,Huzhou 313000,Zhejiang,China
  • Received:2021-12-22 Revised:2022-03-31 Online:2022-08-31 Published:2022-10-31

摘要:

通过开展岩石静力学试验获取岩石力学参数对于优化露天台阶爆破方案和改善爆破效果具有重要意义。以国内某露天铜矿矿岩为研究对象,使用冲击动能为0.735 Nm的HM-82L型回弹仪对岩体的力学特性开展原位试验研究。此外,在现场钻取岩芯制备标准试样,使用SET-PLT-02型声波测试仪进行波速测试,并基于MTS-322液压伺服力学试验机开展系列力学试验。现场回弹试验结果表明:矿区南端斑岩的回弹值大于北端矽卡岩的回弹值,且回弹值随岩体风化程度的增大而逐渐减小;室内物理力学试验结果表明岩体波速、单轴抗压强度、弹模与回弹值之间的变化规律基本一致,拟合曲线表明波速、单轴抗压强度与回弹值之间呈线性正相关关系,而弹模与回弹值之间呈指数相关关系,拟合相关系数说明利用回弹值估测岩体波速和基本力学参数是可靠的。研究成果为快速可靠地获取该露天铜矿矿区岩体的基本物理力学指标提供了可靠的技术途径。

关键词: L型回弹仪, 波速, 室内试验, 单轴抗压强度, 弹性模量, 台阶爆破

Abstract:

Determining the rock mechanical parameters by static experiments is of great significance for optimizing the open-pit bench blasting scheme and improving the blasting effect.Therefore,the rock mass in an open-pit copper mine in China was taken as the research object,by applying the HM-82L rebound hammer whose impact kinetic energy is 0.735 Nm,a large number of in-situ measurements of rock mass mechanical properties were conducted.Meanwhile,dozens of standard samples were prepared from the on-site rock core.On the one hand,the test of rock longitudinal wave velocity was carried out by using SET-PLT-02 ultrasonic testing instrument,and the uniaxial compression experiment was performed as well based on the MTS-322 hydraulic-servo mechanical testing machine.The result of field rebound measurement indicates that the rebound value of the porphyry at the southern end of the mining area is greater than that of the skarn at the northern end,and the rebound value gradually decreases with the increase of the weathering degree of the rock mass.In addition,the results of indoor physical and mechanical test show that the variation laws of rock wave velocity,uniaxial compressive strength and elastic modulus are generally consistent with the rebound value,it is shown from the fitting curves that there are linear positive correlations between P-wave velocity,uniaxial compressive strength and rebound value,whereas an exponential correlation is generated between elastic modulus and rebound value.All the fitting correlation coefficient indicate that it is reliable to estimate the rock wave velocity and basic mechanical parameters by using the rebound value.The achievements of this study provide a reliable methodology to quickly and reliably obtain the basic physical and mechanical indicators of the rock mass in the open-pit copper mine.

Key words: L-type rebound instrument, wave velocity, laboratory experiment, uniaxial compressive strength, elastic modulus, bench blasting

中图分类号: 

  • TD164

图1

回弹仪构造及测试流程"

图2

HM-82L型回弹仪"

表1

HM-82L型回弹仪参数"

参数名称参数值
冲击能量/Nm0.735
锤重/g115
弹簧拉伸长度/mm75
冲击棒半径/mm25
外壳尺寸/mm55×55×250
内存数据/个4 000
单序列最大冲击数99

图3

回弹仪现场测试"

图4

岩石单轴压缩试验"

表2

部分台阶测点的岩体回弹值原始数据"

测区编号测点1~20回弹值
N-58台阶(强风化矽卡岩)51.041.051.042.032.544.034.538.536.545.4
34.043.539.546.551.042.542.543.562.054.0
N-70台阶(中风化矽卡岩)44.041.539.542.558.552.053.558.545.055.5
37.555.045.038.533.536.051.563.062.545.5
S-70台阶(弱风化斑岩)39.561.560.559.562.050.549.548.558.539.0
45.050.038.033.038.540.050.042.548.545.5
S-82台阶(斑岩)51.552.050.557.543.050.054.065.055.063.0
55.048.052.056.053.552.046.051.546.541.5

表3

岩石试样基本物理力学参数"

采样区域岩样编号直径/mm高度/mm密度/(kg?m-3纵波波速/(m?s-1单轴压缩强度/MPa弹模/GPa
S-82台阶A4-149.20100.212 640.665 030123.3236.31
A4-249.3199.642 661.214 689117.4834.41
A4-449.32100.532 579.194 842116.6633.67
S-70台阶B2-149.7299.642 559.114 32095.5432.98
B2-249.6299.572 445.494 052103.3529.04
B2-349.0899.692 492.944 17989.0327.53
N-70台阶C3-148.53100.092 447.723 63976.2125.82
C3-249.3699.682 394.983 59470.6725.03
C3-349.0599.772 399.413 22775.9824.53
N-58台阶D1-149.28100.222 391.613 35456.7023.42
D1-249.59100.202 218.213 26349.0218.32
D1-349.3498.992 250.343 82263.2115.72

图5

岩石破坏形态"

图6

岩石纵波波速与回弹值关系曲线"

图7

岩石单轴抗压强度、弹模与回弹值关系"

Aydin A, Basu A,2005.The Schmidt Hammer in rock material characterization[J].Engineering Geology,81(1):1-14.
Bilgin N, Copur H, Balci C,2016.Use of Schmidt Hammer with special reference to strength reduction factor related to cleat presence in a coal mine[J].International Journal of Rock Me-chanics & Mining Sciences,84:25-33.
Chen Xuesong, Renze Ou, Lin Weixing,et al,2021.Research on the influence of blasting parameter optimization on block size control[J].Mining Technology,21(6):134-137.
Cheng R S, Zhou Z L, Chen W S,et al,2022.Effects of axial air deck on blast-induced ground vibration[J].Rock Mechanics and Rock Engineering,55:1037-1053.
Dai Lin, Li Siwei,2021.Numerical simulation of blasting parameters optimization in Heishan open-pit mine[J]. Blasting,38(4):101-107.
Day M J, Goudie A S,1977.Field assessment of rock hardness using the Schmidt test hammer[J].British Geomorphological Research Group Technical Bulletin,18:19-29.
Ding Huangping, Nai Lei, Zhang Zhenying,2008.Research on relativity to point loading test and rebound test on compression strength of rock[J].Subgrade Engineering,28(5):70-71.
Gao Wangqing, Li Cao,2021.Experimental research on concrete strength curve of rebound method in Guangzhou area[J].Construction Quality,39(7):47-51.
Gu H L, Tao M, Li X B,et al,2019.The effects of water content and external incident energy on coal dynamic behaviour[J].International Journal of Rock Mechanics and Mining Sciences,123:104088.
Jin Peng, Liu Kewei, Li Xudong,et al,2021.Numerical simulation study of crack propagation in deep rock mass under water-coupling blasting[J].Gold Science and Technology,29(1):108-119.
Kang Houjin,2021.Influence control of subway station construction on environment in complex environment [J].Highway,66(8):359-366.
Li Qiyue, Zhao Xinhao, Wei Xin’ao,et al,2019.Study and application of contour control blasting technology for large section tunnel[J].Gold Science and Technology,27(3):350-357.
Li Xianglong, Zhang Qihu, Wang Jianguo,et al,2021.Experimental study on precise delay hole-by-hole blasting vibration reduction of underground blasting[J].Gold Science and Technology,29(3):401-410.
Long Deyu, Qiu Enxi, Shi Yue,2010.Study on relationship between uniaxial compressive strength and resilience strength of red beds[J].Subgrade Engineering,(3):185-187.
Ma Junjie, Huang Yonghui, Zhang Zhiyu,et al,2021.Optimization study of blasting parameters in an underground mining site of a tin mine[J].Nonferrous Metals Engineering,11(12):93-99.
Pga A, Am A, Mh B,et al,2021.Soft computing based closed form equations correlating L and N-type Schmidt hammer rebound numbers of rocks[J].Transportation Geotechnics,29:1-14.
Qiu Sijian, Yang Zeping, Liang Haian,2021.Experimental study on uniaxial compressive strength of Danxia formation clastic rocks in northern guangdong based on N-type schmidt hammer[J].Science Technology and Engineering,21(1):290-296.
Wang Kaidi,2020a.Test and Analysis of Rock Strength by Rebound Method[D].Hefei:Hefei University of Technology.
Wang Kaidi,2020b.Analysis of current situation of research on rebound testing of rock strength[J].Scientific and Technological Innovation Information,(30):129-130.
Wang Rui, Meng Yaoyao, Ren Dandan,et al,2018.Fast forecasting of rock strength based on the ultrasonic-rebound comprehensive method[J].Journal of Railway Engineering Society,35(10):27-31,48.
Xiong Pengfei, Liang Chunhua,2019.Research on concrete strength test under rebound test and compression test [J].Scientific and Technological Innovation Information,(4):129-130.
Yuan Guangxiang, Wang Pengjiao, Li Jianyong,et al,2017.Schmidt hammer test methods for rock core[J].China Measurement & Testing Technology,43(9):35-41.
Zhao H T, Tao M, Li X B,et al,2019.Estimation of spalling strength of sandstone under different pre-confining pressure by experiment and numerical simulation[J].International Journal of Impact Engineering,133:103359.
陈学松,欧任泽,林卫星,等,2021.爆破参数优化对块度控制的影响研究[J].采矿技术,21(6):134-137.
戴林,李思维,2021.黑山露天矿爆破参数优化数值模拟研究[J].爆破,38(4):101-107.
丁黄平,佴磊,张振营,2008.岩石抗压强度点荷试验与回弹试验相关性研究[J].路基工程,28(5):70-71.
高望清,李操,2021.广州地区回弹法检测高强混凝土强度测强曲线试验研究[J].工程质量,39(7):47-51.
金鹏,刘科伟,李旭东,等,2021.深部岩体水耦合爆破裂纹扩展数值模拟研究[J].黄金科学技术,29(1):108-119.
康后金,2021.复杂环境下地铁车站施工对环境的影响控制[J].公路,66(8):359-366.
李启月,赵新浩,魏新傲,等,2019.大断面隧道轮廓控制爆破技术研究与应用[J].黄金科学技术,27(3):350-357.
李祥龙,张其虎,王建国,等,2021.地下爆破精确延时逐孔起爆减振试验研究[J].黄金科学技术,29(3):401-410.
龙德育,邱恩喜,石岳,2010.红层单轴抗压强度与回弹强度相关关系研究[J].路基工程,(3):185-187.
马俊杰,黄永辉,张智宇,等,2021.某锡矿地下采场爆破参数优化研究[J].有色金属工程,11(12):93-99.
邱思检,杨泽平,梁海安,2021.基于N型回弹仪的粤北丹霞组碎屑岩单轴抗压强度试验研究[J].科学技术与工程,21(1):290-296.
王凯笛,2020a.岩石强度的回弹法测试与分析[D].合肥:合肥工业大学.
王凯笛,2020b.岩石强度的回弹测试研究现状分析[J].科学技术创新,(30):129-130.
王睿,孟尧尧,任兆丹,等,2018.基于声波—回弹联合法的岩石强度快速预测[J].铁道工程学报,35(10):27-31,48.
熊鹏飞,梁春华,2019.回弹检测及抗压试验下混凝土强度试验研究[J].科学技术创新,(4):129-130.
袁广祥,王朋姣,李建勇,等,2017.岩芯回弹测试方法[J].中国测试,43(9):35-41.
[1] 海龙,徐博,赵鑫. 建筑垃圾制备膏体充填材料骨料级配优化[J]. 黄金科学技术, 2021, 29(4): 573-581.
[2] 杨少峰,蒲成志,曾佳君,李益龙. 不同张开度裂隙类岩体循环加卸载下滞回环特征与损伤变形分析[J]. 黄金科学技术, 2021, 29(3): 392-400.
[3] 胡毕伟, 尹土兵, 李夕兵. 微波辐射辅助机械冲击破碎岩石动力学试验研究[J]. 黄金科学技术, 2020, 28(4): 521-530.
[4] 黄照东,张德明,刘一锴,张钦礼,王浩. 柠檬酸浸法预处理对磷石膏充填体性能的影响[J]. 黄金科学技术, 2020, 28(1): 97-104.
[5] 郭春志,马春德,周亚楠,刘泽霖,龙珊. 基于波速测量的岩石储能量化表征方法研究[J]. 黄金科学技术, 2019, 27(2): 223-231.
[6] 李金玲,王李管,陈鑫. 露天台阶爆破矿岩交界处损失贫化控制系统[J]. 黄金科学技术, 2016, 24(3): 14-20.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!