img

QQ群聊

img

官方微信

高级检索

黄金科学技术 ›› 2022, Vol. 30 ›› Issue (1): 54-63.doi: 10.11872/j.issn.1005-2518.2022.01.092

• 采选技术与矿山管理 • 上一篇    下一篇

干湿循环和含水率对尾砂压缩固结特性的影响研究

王仲辉1(),王千福1,田亚坤1,2,伍玲玲1,2,禹雪阳1,张志军1,2()   

  1. 1.南华大学资源环境与安全工程学院,湖南 衡阳 421001
    2.湖南省矿山岩土工程灾害预测与控制工程技术研究中心,湖南 衡阳 421001
  • 收稿日期:2021-07-14 修回日期:2021-11-18 出版日期:2022-02-28 发布日期:2022-04-25
  • 通讯作者: 张志军 E-mail:1604309416@qq.com;zzj181@163.com
  • 作者简介:王仲辉(1997-),男,湖南衡南人,硕士研究生,从事尾矿坝和边坡工程安全评价等方面的研究工作。1604309416@qq.com
  • 基金资助:
    国家自然科学基金项目“吸湿—脱湿循环作用下铀尾矿的细观力学特性研究”(51774187);“微生物注浆加固渗流场作用下的尾矿坝试验及机理研究”(51804164);湖南省教育厅科研基金项目“基于介观结构及干湿循环作用的尾矿颗粒介质力学行为基础研究”(20B496);湖南省研究生科研创新项目“干湿循环作用下细粒尾矿细观力学特性及变形机理研究”(CX20210925);“微生物在致密型砂岩铀矿储层的迁移动力学研究”(CX20210927);湖南省大学生创新创业训练计划项目“干湿循环条件下不同含水率的尾矿砂固结特性研究”(202110555083)

Study on Consolidation Characteristics of Tailings with Different Moisture Content Under Dry-Wet Cycle

Zhonghui WANG1(),Qianfu WANG1,Yakun TIAN1,2,Lingling WU1,2,Xueyang YU1,Zhijun ZHANG1,2()   

  1. 1.School of Resource & Environment and Safety Engineering, University of South China, Hengyang 421001, Hunan, China
    2.Hunan Engineering Technology Research Center of Mining Geotechnical Engineering Disaster Prediction and Control, Hengyang 421001, Hunan, China
  • Received:2021-07-14 Revised:2021-11-18 Online:2022-02-28 Published:2022-04-25
  • Contact: Zhijun ZHANG E-mail:1604309416@qq.com;zzj181@163.com

摘要:

为辅助计算尾矿存积的沉降距离,指导放矿、尾矿子坝堆筑,提高尾矿坝的经济效益。研究干湿循环作用和含水率对湖南某金属尾矿库尾砂的压缩固结特性的影响。对含水率为10%、12%、14%、16%和18%的尾砂分别进行0~5次脱湿—吸湿—再脱湿试验,借助GZQ-1型全自动高压固结仪对试样开展了快速固结试验。研究结果表明:(1)相同条件下,孔隙比随着压力的上升而减少;(2)相同循环次数下,压缩系数随着含水率的上升而增加;相同含水率下,压缩系数随着干湿循环次数的增加呈“Λ”型变化;(3)不经干湿循环,固结系数随含水率的增加先上升后下降;在相同含水率条件下,随干湿循环次数的增加,固结系数的变化大致呈M型波动。前期循环过程受力以毛细水压力为主导,待颗粒运动稳定,尾砂孔隙结构发育完全,受力以黏结力和摩擦力为主导。

关键词: 干湿循环, 含水率, 尾砂, e-p曲线, 压缩系数, 固结系数

Abstract:

With the improvement of mineral processing technology,the amount of tailings in storage is increasing year by year,and the particle size of tailings is getting finer and finer.However,such tailings have poor permeability,good water holding performance,long consolidation time and low mechanical strength.Such tailings often have problems such as difficult drainage,slow deposition and poor stability in the process of dam-filling.In the complex climate and geographical environment,rainfall infiltration,water evaporation,repeated rise and fall of saturation line (that is,under the condition of dry-wet cycle),earthquake and so on will be encountered.These factors can not be ignored for the settlement of fine tailings pond.In order to help calculate the settlement distance of tailings deposit and guide ore drawing and tailings dam construction,the influence of dry-wet cycle and moisture content on the compression consolidation characteristics of tailings of a metal tailings pond in Hunan Province was studied.The tailings with water content of 10%,12%,14%,16% and 18% were subjected to 0~5 times of dehumidification-moisture absorption-dehumidification tests respectively,and rapid consolidation tests were carried out on the samples with the help of GZQ-1 automatic high-pressure consolidation instrument.The results show that:(1)Under the same conditions,the void ratio decreases with the increase of pressure.Without the dry-wet cycle,the void ratio of the sample at the optimum moisture content is the smallest,and the void ratio of natural moisture content,optimum moisture content and saturated moisture content changes in a U-shaped curve in turn.After the dry-wet cycle,the volume of tailings sample expands slightly,and the internal water-gas channel changes.After graded loading,the internal particles fill the pores,and finally the structure tends to be stable.(2)Under the same number of cycles,the compression coefficient increases with the increase of water content, Under the same moisture content,the compression coefficient changes in a “Λ” shape with the increase of the number of dry-wet cycles.The number of dry-wet cycles and moisture content can increase the compactness of tailings and reduce the compression coefficient by changing the bonding effect and capillary water pressure of tailings cement.(3)Without drying-wetting cycle,the con-solidation coefficient first rises and then decreases with the increase of water content. At the same moisture content,the change of consolidation coefficient is approximately M-shaped with the increase of the number of dry-wet cycles.The stress in the early cycle process is mainly dominated by capillary water pressure.When the particles move stably and the pore structure of tailings is fully developed,the stress is dominated by cohesive force and friction force.Through the above three points,we can understand the stress characteristics of tailings sand consolidation process,assist in calculating the settlement distance of tailings accumulation,and guide ore drawing and sub-dam construction.Monitoring the environmental temperature and precipitation,controlling the water content of tailings and the accumulation period of tailings can improve the economic benefit and stability of tailings dam.

Key words: dry-wet cycle, moisture content, tailings sand, e-p curve, compression coefficient, coefficient of consolidation

中图分类号: 

  • TD926.4

图1

尾砂的粒径级配曲线图"

表1

尾砂级配参数"

参数数值
有效粒径d10/mm0.152
中值粒径d30/mm0.181
限制粒径d60/mm0.208
不均匀系数Cu1.370
曲率系数Cc1.040

图2

干密度曲线图"

表2

尾砂基本物理性质参数"

参数数值
自然干密度ρd/(g·cm-31.734
最优含水率ω/%16%
自然含水率ωop/%9%
比重Gs2.66
孔隙比e0.517

图3

试样和模具示意图"

图4

试验装置剖面图"

图5

GZQ-1型全自动高压固结仪"

图6

干—湿循环过程示意图"

图7

不同含水率下的e-p曲线图"

图8

不同循环次数下的e-p曲线图"

图9

试样在试验过程中颗粒变化图"

图10

不同含水率下的压缩系数图"

表3

100~200 kPa土压缩系数对应的压缩性"

压缩系数/(MPa-1土体压缩性
<0.1低压缩土
0.1~0.5中压缩土
>0.5高压缩土

图11

未经干—湿循环不同含水率下的固结系数图"

图12

不同循环次数下的固结系数图"

Al-Homoud A S, Basma A A, Malkawi A I H, al et,1995.Cyclic swelling behavior of clays[J].Journal of Geotechnical Engineering,121(7):562-565.
Azmi M, Ramli M H, Hezmi M A, al et,2019.Estimation of Soil Water Characteristic Curves (SWCC) of mining sand using soil suction modelling[J].IOP Conference Series:Materials Science and Engineering,527(1):1-14.
Chen Yong, Su Jian, Tan Yunzhi, al et,2019.Water retention capacities of soils under the coupling actions of cyclic drying-wetting and repeated loading-unloading[J].Rock and Soil Mechanics,40(8):2907-2913.
Estabragh A R, Soltani A, Javadi A A,2020.Effect of pore water chemistry on the behaviour of a kaolin-bentonite mixture during drying and wetting cycles[J].European Journal of Environmental and Civil Engineering,24(7):895-914.
Fang Jinjin, Yang Xiaolin, Feng Yixin, al et,2021.True triaxial experimental study on mechanical properties of expansive soils after drying and wetting cycles[J].Chinese Journal of Rock Mechanics and Engineering,40(5):1043-1055.
Gapak Y, Tadikonda V B,2018.Hysteretic water-retention behavior of bentonites[J].Journal of Hazardous,Toxic,and Radioactive Waste,22(3):1-9.
Ge Miaomiao, Li Ning, Sheng Daichao, al et,2021.Experimental investigation of microscopic deformation mechanism of unsaturated compacted loess under hydraulic coupling conditions[J].Rock and Soil Mechanics,42(9):2437-2448.
Gong Xuepeng, Tang Chaosheng, Shi Bin, al et,2019.Evolution of soil microstructure during drying and wetting[J].Journal of Engineering Geology,27(4):775-793.
Hao Yanzhou, Wang Tiehang, Wang Chao, al et,2021.Experimental study on triaxial shear characteristics of compacted loess under drying and wetting cycles[J].Journal of Hydraulic Engineering,52(3):359-368.
Hou Hezi, Li Cuiping, Wang Shaoyong, al et,2019.Settling velocity variation of mud layer and particle settling characteristics in thickening of tailings[J].Journal of Central South University (Science and Technology),50(6):1428-1436.
Hu Changming, Yuan Yili, Wang Xueyan, al et,2018.Experimental study on strength deterioration model of compacted loess under wetting-drying cycles[J].Chinese Journal of Rock Mechanics and Engineering,37(12):2804-2818.
Julina M, Thyagaraj T,2019.Quantification of desiccation cracks using X-ray tomography for tracing shrinkage path of compacted expansive soil[J].Acta Geotechnica,14(1):35-56.
Li Huaixin, Lin Bin, Chen Shiwei, al et,2020.Study on the softening model and strength of red clay at different water content[J].Gold Science and Technology,28(3):442-449.
Li Liang, Meng Hao, Quan Chao, al et,2011.Study on variation of safety factor with the dam height for the tailing dam by upstream embankment method[J].Journal of Safety Science and Technology,7(7):31-34.
Li Xiaoning, Wang Lin, Xu Jing,2019.Study on consolidation and settlement characteristics of unsaturated clay soil under the air pressures controlled condition[J].Plateau Science Research,3(3):28-34.
Li Zhihan,2019.Analysis of Settlement Effect of Water Level Rise and Drop on Red Clay Subgrade Model[D].Guilin:Guilin University of Technology.
Liang Bing, Wang Jian, Jiang Liguo, al et,2018.Experimental research on compressibility and consolidation characteristics of tailings and e-Pcurve model analysis[J].Journal of Disaster Prevention and Mitigation Engineering,38(1):109-117.
Ministry of Housing and Urban-Rural Development of the People's Republic of China,2010.Technical Code for Geotechnical Engineering of Tailings Embankment:GB/T50547-2010[M].Beijing:China Planning Press.
Ministry of Housing and Urban-Rural Development of the People's Republic of China,2013.Code for Design of Tailings Facilities:GB/T50863-2013[M].Beijing:China Planning Press.
State Administration for Market Regulation, Administration Standardization,2020.Safety Regulation for Tailings Pond:G B39496-2020[M].Beijing:China Quality Inspection Press.
Tan Bo, Xu Liang, Ni Qiuyi, al et,2021.Development law and influencing factors of expansive soil cracks under the action of dry and wet cycles[J/OL].Journal of Guilin University of Technolog:1-8..
Wu Shangwei,2017.Effect of Particle Size on Physico-Mechanical Properties of Tailings and Dam Stability Study[D].Chongqing:Chongqing University.
Wu Shangwei, Yang Chunhe, Hu Xiaoming, al et,2017.Research on correlation of tailings particle properties and compression consolidation properties[J].Journal of Huazhong University of Science and Technology (Natural Science Edition),45(11):121-126.
Wu Yajun, Wei Xing, Tang Jing,2018.Effects of initial water content and sand content on dredger fill settlement[J].Journal of Shanghai University (Natural Science),24(2):278-286.
Ye Zi, Ai Zhiyong,2021.Fully-coupled consolidation characteristics of layered unsaturated soils subjected to varying loadings[J].Rock and Soil Mechanics,42(1):135-142.
Zhang Tian, Wang Lei, Shen Sidong,2020.Analysis of two-dimensional plane strain consolidation characteristics for unsaturated soils under piece-wise cyclic loading[J/OL].Jo-urnal of Engineering Geology:1-8..
Zhao Guitao, Han Zhong, Zou Weilie, al et,2021.Influences of drying-wetting-freeze-thaw cycles on soil-water and shrin-kage characteristics of expansive soil[J].Chinese Journal of Geotechnical Engineering,43(6):1139-1146.
陈勇,苏剑,谈云志,等,2019.循环脱吸湿与加卸载耦合作用下土体持水性能试验研究[J].岩土力学,40(8):2907-2913.
方瑾瑾,杨小林,冯以鑫,等,2021.干湿循环后膨胀土力学特性的真三轴试验研究[J].岩石力学与工程学报,40(5):1043-1055.
葛苗苗,李宁,盛岱超,等,2021.水力耦合作用下非饱和压实黄土细观变形机制试验研究[J].岩土力学,42(9):2437-2448.
巩学鹏,唐朝生,施斌,等,2019.黏性土干/湿过程中土结构演化特征研究进展[J].工程地质学报,27(4):775-793.
国家市场监督管理总局,国家标准化管理委员会,2020.尾矿库安全规程:G B39496-2020[M].北京:中国质检出版社.
郝延周,王铁行,汪朝,等,2021.干湿循环作用下压实黄土三轴剪切特性试验研究[J].水利学报,52(3):359-368.
侯贺子,李翠平,王少勇,等,2019.尾矿浓密中泥层沉降速度变化及颗粒沉降特性[J].中南大学学报(自然科学版),50(6):1428-1436.
胡长明,袁一力,王雪艳,等,2018.干湿循环作用下压实黄土强度劣化模型试验研究[J].岩石力学与工程学报,37(12):2804-2818.
李怀鑫,林斌,陈士威,等,2020.不同含水率下红黏土软化模型及强度试验研究[J].黄金科学技术,28(3):442-449.
李亮,孟浩,全超,等,2011.上游式筑坝法尾矿坝的安全系数随堆筑坝高变化分析[J].中国安全生产科学技术,7(7):31-34.
李晓宁,王林,徐静,2019.控制气压条件的非饱和粘性土固结沉降特性研究[J].高原科学研究,3(3):28-34.
李知翰,2019.水位升降对红黏土路基模型的沉降影响分析[D].桂林:桂林理工大学.
梁冰,王堃,姜利国,等,2018.尾砂压缩固结特性试验及e-P曲线模型分析研究[J].防灾减灾工程学报,38(1):109-117.
谭波,徐良,倪秋奕,等,2021.干湿循环作用下膨胀土裂隙发育规律及影响因素[J/OL].桂林理工大学学报:1-8..
巫尚蔚,2017.尾矿物理力学特性的粒径效应及坝体稳定性研究[D].重庆:重庆大学.
巫尚蔚,杨春和,胡晓明,等,2017.尾矿颗粒性质与压缩固结特性的关联性研究[J].华中科技大学学报(自然科版),45(11):121-126.
武亚军,魏星,唐晶,2018.初始含水率和掺砂量对吹填土沉降的影响[J].上海大学学报(自然科学版),24(2):278-286.
叶梓,艾智勇,2021.变荷载下层状非饱和土地基全耦合固结特性研究[J].岩土力学,42(1):135-142.
张添,汪磊,沈思东,2020.分段循环荷载作用下二维非饱和土固结特性分析[J/OL].工程地质学报:1-8..
赵贵涛,韩仲,邹维列,等,2021.干湿、冻融循环对膨胀土土—水及收缩特征的影响[J].岩土工程学报,43(6):1139-1146.
中华人民共和国住房和城乡建设部,2010.尾矿堆积坝岩土工程技术规范:GB/T50547-2010[M].北京:中国计划出版社.
中华人民共和国住房和城乡建设部,2013.尾矿设施设计规范:GB/T50863-2013[M].北京:中国计划出版社.
[1] 李兆宇,孙伟,张盛友,李金鑫. 全尾砂物理特性对絮凝沉降性能影响规律的研究[J]. 黄金科学技术, 2022, 30(1): 64-71.
[2] 林斌,田竹华,陈雨漫. 含水率对重塑红黏土反复抗剪强度影响试验研究[J]. 黄金科学技术, 2021, 29(5): 680-689.
[3] 张美道,饶运章,徐文峰,王文涛. 全尾砂膏体充填配比优化正交试验[J]. 黄金科学技术, 2021, 29(5): 740-748.
[4] 赵鑫,海龙,徐博,程同俊. 电厂灰渣制备井下膏体充填材料试验研究[J]. 黄金科学技术, 2021, 29(4): 582-592.
[5] 何建元,李宏业,高谦,尹升华. 采矿废石—尾砂混合骨料在下向分层进路胶结充填采矿中应用的试验研究[J]. 黄金科学技术, 2021, 29(4): 564-572.
[6] 黄仁东,李哲. 基于正交试验的细尾砂—分级尾砂充填体强度研究[J]. 黄金科学技术, 2021, 29(2): 256-265.
[7] 刘奇,岑佑华,刘东锐,罗卫兵,徐喜. 基于静态沉降试验的全尾砂浓密技术参数预测[J]. 黄金科学技术, 2021, 29(2): 266-274.
[8] 李怀鑫, 林斌, 陈士威, 王鹏. 不同含水率下红黏土软化模型及强度试验研究[J]. 黄金科学技术, 2020, 28(3): 442-449.
[9] 康虔,王运敏,贺严,薛希龙,张楚旋. 固液两相耦合条件下全尾砂连续沉降规律研究[J]. 黄金科学技术, 2019, 27(6): 896-902.
[10] 焦华喆, 靳翔飞, 陈新明, 杨亦轩, 王金星. 全尾砂重力浓密导水通道分布与细观渗流规律[J]. 黄金科学技术, 2019, 27(5): 731-739.
[11] 江科,康瑞海,姚中亮,彭亮. 全尾砂最佳絮凝沉降浓度及调控方式研究[J]. 黄金科学技术, 2019, 27(3): 440-448.
[12] 徐文峰,饶运章,李尚辉,许威. 含膨润土充填料浆泌水特性分析[J]. 黄金科学技术, 2019, 27(3): 433-439.
[13] 赵建平,王明虎,赵奕翰. 含水率对砂岩动态拉伸强度的影响[J]. 黄金科学技术, 2019, 27(2): 216-222.
[14] 李宗楠,郭利杰,魏晓明,陈鑫政. 尾砂浆干扰絮凝沉降机理研究[J]. 黄金科学技术, 2019, 27(2): 265-270.
[15] 陈鑫政,郭利杰,李文臣,李宗楠. 全尾砂沉降浓缩试验研究[J]. 黄金科学技术, 2019, 27(1): 105-111.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] 陈芳芳,张亦飞,薛光. 黄金冶炼污染治理与废物资源化利用[J]. J4, 2011, 19(2): 67 -73 .
[2] 王吉青,王苹,赵晓娟,林乡伟. 黄金生产尾矿综合利用的研究与应用[J]. J4, 2010, 18(5): 87 -89 .
[3] 王书春,王瑞腾,孙树提. 内蒙古柴胡栏子金矿床矿体赋存特征及深部预测[J]. J4, 2012, 20(4): 109 -112 .
[4] 谢覃江. 云南省人头箐金矿床地质特征及成因探讨[J]. 黄金科学技术, 0, (): 0 .
[5] 张壮,李文,刘建明,曾庆栋. 大兴安岭中南段银多金属矿床勘查进展与找矿思路[J]. 黄金科学技术, 2016, 24(4): 60 -65 .
[6] 朱学礼,冯涛,柏瑞,宁霄峰,李肖,张子衿. “地质+”多元驱动智慧勘查初步应用[J]. 黄金科学技术, 2017, 25(1): 46 -54 .
[7] 彭剑平,沈述保. 绿色矿山建设长效机制与典型案例[J]. 黄金科学技术, 2016, 24(4): 133 -136 .
[8] 宋英昕,宋明春,丁正江,魏绪峰,徐韶辉,李杰,谭现峰,李世勇,张照录, 焦秀美,胡弘,曹佳. 胶东金矿集区深部找矿重要进展及成矿特征[J]. 黄金科学技术, 2017, 25(3): 4 -18 .
[9] 何顺斌,刘杰. 基于谱聚类算法的岩体结构面产状优势分组[J]. 黄金科学技术, 2017, 25(4): 46 -51 .
[10] 殷璐,金哲男,杨洪英*,张勤. 我国黄金资源综合利用现状与展望[J]. 黄金科学技术, 2018, 26(1): 17 -24 .