img

QQ群聊

img

官方微信

高级检索

黄金科学技术 ›› 2022, Vol. 30 ›› Issue (1): 113-121.doi: 10.11872/j.issn.1005-2518.2022.01.072

• 采选技术与矿山管理 • 上一篇    下一篇

离心重选—浮选脱硫工艺回收细粒级钨锡矿物的试验研究

张婷1(),李平1,冯博2,李振飞1   

  1. 1.赣州有色冶金研究所有限公司,江西 赣州 341000
    2.江西理工大学,江西 赣州 341000
  • 收稿日期:2021-06-07 修回日期:2021-08-16 出版日期:2022-02-28 发布日期:2022-04-25
  • 作者简介:张婷(1989-),女,江西宜春人,硕士研究生,从事有色金属选矿方面的研究工作。806341903@qq.com
  • 基金资助:
    国家重点研发计划项目“镍钴/钨/锑战略金属冶金固废清洁提取与无害化技术”(2019YFC1907400);江西省科技重点研发项目“碱煮钨渣无害化处理与综合回收关键技术研究及应用”(20192ACB70008)

Experimental Study on the Recovery of Fine-grained Tungsten and Tin Mineral by Centrifugal Gravity Separation-Flotation Desulfurization Process

Ting ZHANG1(),Ping LI1,Bo FENG2,Zhenfei LI1   

  1. 1.Ganzhou Nonferrous Metallurgy Research Institute Co. , Ltd. , Ganzhou 341000, Jiangxi, China
    2.Jiangxi University of Science and Technology, Ganzhou 341000, Jiangxi, China
  • Received:2021-06-07 Revised:2021-08-16 Online:2022-02-28 Published:2022-04-25

摘要:

为有效回收广西某细泥中的钨锡矿物,开展了离心重选—浮选脱硫工艺试验研究。细泥中WO3、Sn含量分别为0.52%和0.31%,其中钨主要为黑钨矿和白钨矿,分别占47.69%和39.42%;锡主要以锡石形式存在,占比为75.48%,其次为硫化物中的锡,占比为17.42%。细泥中-0.03 mm粒级产率为61.36%,其WO3、Sn金属量分布率分别高达78.52%和70.39%,因此强化细粒级钨锡矿物的回收是提高选矿技术经济指标的关键。相比传统的摇床重选工艺,离心重选工艺可以有效提高细粒级钨锡矿物的选别指标,获得更高品位的粗精矿,且WO3、Sn回收率分别提高了34.83%和37.43%。本研究最终采用离心重选—浮选脱硫的联合工艺进行了全流程开路试验,获得了WO3、Sn品位分别为19.46%、9.87%,回收率分别为67.92%、57.52%的钨锡精矿,实现了细粒级钨锡矿物的有效回收。

关键词: 细粒级钨锡矿物, 细泥, 摇床重选工艺, 离心重选—浮选脱硫工艺

Abstract:

In order to effectively recover the tungsten and tin minerals in a fine mud in Guangxi,a centrifugal gravity separation-flotation desulfurization process test was carried out.The contents of WO3 and Sn in the fine mud are 0.52% and 0.31%,respectively. Among them,tungsten is mainly wolframite and scheelite,accounting for 47.69% and 39.42% respectively;tin mainly exists in the form of cassiterite,accounting for 75.48%,followed by tin in sulfide minerals,accounting for 17.42%.The -0.03 mm grain yield rate in the fine mud is 61.36%,and its WO3 and Sn metal content distribution rates are as high as 78.52% and 70.39%,respectively. Therefore,strengthening the recovery of fine-grained tungsten-tin minerals is the key of improving technical economic indexes of mineral precessing.A comparative test of reclaiming fine-grained tungsten and tin minerals by shaker gravity separation and centrifugal gravity separation was carried out,and it was found that the centrifugal concentrator equipment has superiority in the gravity separation and recovery of tungsten tin fine sludge.Detailed condition optimization experiments were carried out on the parameters of slurry feeding concentration,feeding time and drum speed that affect the separation effect of the centrifugal concentrator,and the appropriate technological conditions for the centrifugal gravity separation to recovery fine-grained tungsten and tin minerals were obtained.Further improve the grade of tungsten tin concentrate through flotation desulfurization test.The study used the combined process of centrifugal gravity separation and flotation desulfurization to carry out the whole process open circuit test,and obtained tungsten-tin concentrate with WO3,Sn grades of 19.46%,9.87%,and the recovery of 67.92% and 57.52%,respectively,realizing the effective recovery of fine-grained tungsten-tin minerals.

Key words: fine-grained tungsten-tin minerals, fine mud, shaker gravity separation process, centrifugal gravity separation-flotation desulfurization process

中图分类号: 

  • TD954

表1

试样多元素化学分析结果"

元素或氧化物含量/%
WO30.52
Sn0.31
S1.55
As0.80
SiO255.83

表2

钨的化学物相分析结果"

钨物相含量/%分布率/%
总钨0.520100.00
黑钨矿0.24847.69
白钨矿0.20539.42
钨华0.06712.88

表3

锡的化学物相分析结果"

锡物相含量/%分布率/%
总锡0.310100.00
水锡石中锡0.0061.94
硫化物中锡0.05417.42
硅酸盐中锡0.0165.16
锡石0.23475.48

表4

细泥试样粒度分析结果"

粒级/mm产率/%品位/%分布率/%
WO3SnWO3Sn
合计100.000.520.33100.00100.00
+0.07414.760.080.092.294.01
-0.074+0.058.510.260.314.297.97
-0.05+0.0315.370.500.3814.9017.63
-0.0361.360.660.3878.5270.39

图1

试验原则流程"

图2

摇床重选和离心重选工艺获得的粗精矿指标"

图3

给矿浓度对离心选矿机分选效果的影响"

图4

转鼓转速对离心选矿机分选效果的影响"

图5

给矿时间对离心选矿机分选效果的影响"

图6

冲洗水对分选效果的影响"

图7

浮选脱硫试验流程"

图8

浮选脱硫试验结果"

图9

全流程开路试验流程"

表5

全流程开路试验结果"

产品名称产率/%品位/%回收率/%
WO3SnWO3Sn
合 计100.000.530.32100.00100.00
硫化矿1.190.590.841.323.13
中矿30.746.193.028.607.00
钨锡精矿1.8619.469.8767.9257.52
中矿24.650.900.807.8511.65
中矿120.280.130.154.959.53
尾 矿71.280.070.059.3611.17
Chen L Z, Ren N Q, Xiong D H,2008.Experimental study on performance of a continuous centrifugalconcentrator in reconcentrating fine hematite[J].International Journal of Mi-neral Processing,87(1/2):9-16.
Gao Liping, Su Hongzhong,2017.Analysis of the research status of China tungsten-tin deposits[J].World Nonferrous Me-tals,(23):142-143.
Guan Jianhong, Shen Xinchun, Li Ping, al et,2014.Study and application of the recycling technology of tungsten fine mud[J].Multipurpose Utilization of Mineral Resources,(5):38-41.
Huang Wanfu, Xiao Lijing,2012.On the mineral processing technology of fine tungsten slime[J].Nonferrous Metals Science and Engineering,3(1):53-56.
Huang Yunsong, Li Zhenfei, Li Ping, al et,2017.Experimental research on the comprehensive recovery of WO3 and Sn from a tungsten slime[J].China Tungsten Industry,32(4):24-27.
Li Qiang, Zeng Fansen, Chang Yongqiang, al et,2021.Current research situation and application of tungsten slime beneficiation[J].Multipurpose Utilization of Mineral Resources,(1):32-36.
Lin Peiji,2009.Application of centrifugal separator in fine tungsten slime recovery[J].Metal Mine,38(2):138-139.
Luo Xianping, Min Shizhen, Miao Jiancheng,2013.Study on progress in centrifugal concentration equipment and technology[J].Mining Machinery,41(9):1-7.
Luo Xianping, Wang Jinqing, Cao Zhiming, al et,2018.Flotation separation of lead-zinc sulfide ore with different flotation particle size and concentration[J].Chinese Journal of Rare Metals,42(3):307-314.
Pan Jiabin, Jiang Maolin, Wei Xinyan, al et,2015.Research status of tungsten lime separation[J].China Tungsten Industry,30(4):48-52.
Sun Peichun, Chen Luzhen, Xiong Tao, al et,2020.Application of SL on centrifugal separators in recovering tungsten slime in Jiangxi Province[J].Metal Mine,49(7):94-98.
Tang Xuefeng, Zhao Hongdong,2021.Application of desliming-flotation flowsheet in recovering ultrafine cassiterite[J].Mining and Metallurgical Engineering,41(1):41-44.
Wang Jianmin,2011.Application of SLon-2400 (1600) centrifuge in processing icro-fine poor hematite[J].Nonferrous Metals (Mineral Processing Section),(Supp.1):168-170.
Wang Tai, Hu Zhen, He Mingfei, al et,2020.Laboratory research and commercial application of flotation technology for recovering tin ore slime[J].Multipurpose Utilization of Mineral Resources,40 (3):50-53.
Wang Xishao, Lan Jian, Li Ningjun, al et,2015.Mineral processing experiment of a tungsten and tin slime in Guangxi[J].Metal Mine,44(11):174-178.
Xing Wanli, Wang Anjian, Wang Gaoshang, al et,2016.Analysis of tin resources security in China[J].China Mining Magazine,25(7):11-15.
Xu Xiaoyi,2018.Research on Technology and Mechanism of Efficient Recovery of Cassiterite[D].Ganzhou:Jiangxi University of Science and Technology.
Yao Mingzhao, Li Qiang, Zhang Yuejun, al et,2016.Development and application of high concentration flotation technology [J].Modern Mining,32(4):75-77,81.
Yi Fan, Chen Luzhen, Xiong Tao, al et,2019.Echnological test of separating tungsten-tin fine-grained slime by SLon centrifuge[J].China Tungsten Industry,34(4):26-31.
Zhou Hepeng, Zhang Yongbing, Zhou Xiaowen, al et,2020.Study on the technology of recovery tungsten slime by a new continuous centrifugal concentrator[J].Nonferrous Metals Engineering,10(3):94-100.
Zhou Xiaowen, Yang Zhizhao, Zhang Yongbing, al et,2019.Experimental study on the recovery of tungsten slime based on new centrifugal concentrator combined process[J].China Tungsten Industry,34(3):24-29.
Zong Lu, Cai Gaipin, Liu Zhigang, al et,2018.Analysis of influence of operation parameters of centrifugal concentrator on dressing effect[J].China Powder Science and Technology,24(2):65-72.
高丽萍,苏红中,2017.中国钨锡矿床研究现状浅析[J].世界有色金属,(23):142-143.
管建红,沈新春,李平,等,2014.钨细泥回收工艺研究与应用[J].矿产综合利用,(5):38-41.
黄万抚,肖礼菁,2012.钨细泥选矿工艺现状[J].有色金属科学与工程,3(1):53-56.
黄云松,李振飞,李平,等,2017.钨细泥中钨锡综合回收的试验研究[J].中国钨业,32(4):24-27.
李强,曾繁森,常永强,等,2021.钨细泥选矿工艺应用现状[J].矿产综合利用,(1):32-36.
林培基,2009.离心选矿机在钨细泥选矿中的应用[J].金属矿山,38(2):138-139.
罗仙平,闵世珍,缪建成,2013.离心选矿装备技术研究进展[J].矿山机械,41 (9):1-7.
罗仙平,王金庆,曹志明,等,2018.浮选粒度及浓度对铅锌硫化矿浮选分离的影响[J].稀有金属,42(3):307-314.
潘加彬,蒋茂林,韦新彦,等,2015.钨细泥选矿研究现状综述[J].中国钨业,30(4):48-52.
孙培春,陈禄政,熊涛,等,2020.应用SLon离心机回收江西某钨细泥[J].金属矿山,49(7):94-98.
唐雪峰,赵洪冬,2021.脱泥并选工艺回收极微细粒锡石试验研究[J].矿冶工程,41(1):41-44.
汪泰,胡真,何名飞,等,2020.锡矿泥浮选工艺研究及工业化应用[J].矿冶工程,40 (3):50-53.
王键敏,2011.SLon-2400(1600)离心选矿机选别微细粒贫赤铁矿的应用[J].有色金属(选矿部分),(增1):168-170.
王喜绍,兰健,李宁钧,等,2015.广西某钨锡细泥选矿试验[J].金属矿山,44(11):174-178.
邢万里,王安建,王高尚,等,2016.我国锡资源安全简析[J].中国矿业,25(7):11-15.
徐晓衣,2018.微细粒锡石高效回收工艺与机理研究[D].赣州:江西理工大学.
姚明钊,李强,张跃军,等,2016.高浓度浮选技术的发展与应用[J].现代矿业,32(4):75-77,81.
易凡,陈禄政,熊涛,等,2019.SLon离心机分选钨锡微细粒级矿泥的工艺试验[J].中国钨业,34(4):26-31.
周贺鹏,张永兵,周晓文,等,2020.新型连续型离心选矿机回收钨细泥的工艺研究[J].有色金属工程,10(3):94-100.
周晓文,杨志兆,张永兵,等,2019.基于新型离心选矿机的联合流程回收钨细泥试验研究[J].中国钨业,34(3):24-29.
宗路,蔡改贫,刘志刚,等,2018.离心选矿机操作参数对选矿效果的影响[J].中国粉体技术,24(2):65-72.
[1] 赵汝全,李献帅,李琳,吴彩斌,石贵明. 六棱柱磨矿介质在黑钨矿选矿试验中的应用[J]. 黄金科学技术, 2016, 24(6): 107-111.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] 杨龙伟, 杨兴科, 高雅宁, 何虎军, 褚娜娜, 张正民. 南秦岭汉阴县长沟金矿床三维模型与定位预测[J]. 黄金科学技术, 2018, 26(3): 270 -278 .
[2] 杨超,郭利杰,王劼,史采星,许文远. 某金矿大倍线加压充填技术研究与应用[J]. 黄金科学技术, 2019, 27(1): 89 -96 .
[3] 杜胜江, 温汉捷, 秦朝建, 卢树藩, 燕永锋, 杨光树. 滇东南老君山矿集区三保锰银矿床碳氧同位素特征及其意义[J]. 黄金科学技术, 2018, 26(3): 261 -269 .
[4] 潘彤,王德福. 初论青海省金矿成矿系列[J]. 黄金科学技术, 2018, 26(4): 423 -430 .
[5] 谢玉华,高华,张哲,杨亮,柯新星,刘晓敏,罗建镖,刘琦,许坤林,刘继顺,王智琳,孔华,刘飚. 湖南通道地区金矿床成矿流体特征及成矿物质来源:来自流体包裹体、H-O-S同位素的证据[J]. 黄金科学技术, 2021, 29(1): 74 -89 .
[6] 何建元,李宏业,高谦,尹升华. 采矿废石—尾砂混合骨料在下向分层进路胶结充填采矿中应用的试验研究[J]. 黄金科学技术, 2021, 29(4): 564 -572 .
[7] 谭正华,文阳,王李管,李国泰. 基于关键链的地下矿采掘计划编制优化方法[J]. 黄金科学技术, 2021, 29(4): 602 -611 .
[8] 于世波, 杨小聪, 原野, 王志修. 深部区域采矿时序的地压调控卸荷效应研究[J]. 黄金科学技术, 2020, 28(3): 345 -352 .
[9] 毕林,王黎明,段长铭. 矿井环境高精定位技术研究现状与发展[J]. 黄金科学技术, 2021, 29(1): 3 -13 .
[10] 张婷婷, 智士伟, 郭利杰, 武震林, 韩俊南. 铜镍冶炼渣的资源化利用研究进展[J]. 黄金科学技术, 2020, 28(5): 637 -645 .