img

QQ群聊

img

官方微信

高级检索

黄金科学技术 ›› 2021, Vol. 29 ›› Issue (3): 382-391.doi: 10.11872/j.issn.1005-2518.2021.03.003

• 采选技术与矿山管理 • 上一篇    

单轴压缩试验中减弱端部效应新型方法研究

贾敬锎1,2(),黄滚1,2(),汪龙1,2,成墙1,2,甄利兵1,2   

  1. 1.重庆大学煤矿灾害动力学与控制国家重点实验室,重庆 400044
    2.重庆大学资源与安全学院,重庆 400044
  • 收稿日期:2020-12-23 修回日期:2021-03-04 出版日期:2021-06-30 发布日期:2021-07-14
  • 通讯作者: 黄滚 E-mail:cqujjk@163.com;hg023@cqu.edu.cn
  • 作者简介:贾敬锎(1996-),男,河北石家庄人,硕士研究生,从事岩石力学与工程方面的研究工作。cqujjk@163.com

Study on a New Method of Weakening End Effect in Uniaxial Compression Test

Jingkai JIA1,2(),Gun HUANG1,2(),Long WANG1,2,Qiang CHENG1,2,Libing ZHEN1,2   

  1. 1.State Key Laboratory of Coal Mine Disaster Dynamics and Control,Chongqing University,Chongqing 400044,China
    2.School of Resources and Safety Engineering,Chongqing University,Chongqing 400044,China
  • Received:2020-12-23 Revised:2021-03-04 Online:2021-06-30 Published:2021-07-14
  • Contact: Gun HUANG E-mail:cqujjk@163.com;hg023@cqu.edu.cn

摘要:

为了减弱端部效应对单轴抗压强度测量的影响,提出一种新型的单轴压缩试验方法。该方法采用与试件材质相同的岩石作为垫块进行单轴压缩试验,设置了(25+50+25)mm和(20+60+20)mm 2种试件高度组合进行试验,并与高度为50 mm、60 mm的单一试件的试验结果进行对比。结果表明:该新型试验方法可以降低单轴压缩试验中端部效应对测量岩石单轴抗压强度的影响,并得到更为均匀的径向应变;(25+50+25)mm和(20+60+20)mm组合试件相比高度为50 mm和60 mm的单一试件,单轴抗压强度分别降低了38.41%和39.69%,相比标准试件,单轴抗压强度也有所降低。数值模拟结果表明:无论有无端部摩擦,组合试件的单轴抗压强度均与理想状态下模拟所得的岩石试件的单轴抗压强度值接近;无端部摩擦时单个试件与组合试件具有均匀的径向应变;有端部摩擦时组合试件的径向应变较为均匀。数值模拟结果证明了该新型试验方法减弱了端部效应,但并未完全消除。

关键词: 岩石力学, 端部效应, 单轴压缩, 数值模拟, 砂岩, 垫块, 应变分布

Abstract:

As a difficult point in rock mechanics,end effect has been widely concerned by scholars.The phenomenon of end effect is caused by the friction between the indenter of testing machine and rock specimen in the process of compression,which usually causes the measured compressive strength of rock increased.However,the more intuitive performance of end effect is that the radial strain of rock is larger in the middle and smaller at both ends.According to Saint-Venant’s principle,when the height diameter ratio is greater than 2.0,the influence of the end effect can be ignored,but only the influence of the end effect on the measured uniaxial compressive strength can be ignored,which doesn’t form uniform stress in the specimen.Therefore,the method of weakening the end effect should be further studied.By summarizing the research of domestic and foreign scholars,it is found that there are two main methods to reduce the end effect,they are reducing the end friction and controlling the end deformation.The first method is to add friction reducing agent between the indenter of the testing machine and the end of the rock specimen,but it can’t completely eliminate the end effect.The second method is to use the metal specimen with the same mechanical parameters as the rock specimen as the cushion block,but it is too difficult to find this kind of metal material.Based on the second idea,to reduce the influence of end effect in the measurement of uniaxial compressive strength,a new uniaxial compression test method was proposed.In this method,uniaxial compression test was carried out using the rocks with the same material as the specimen as the cushion block.Two combination forms of (25+50+25)mm and (20+60+20)mm are set for the experiment,and the experimental results are compared with those specimens with the height of 50 mm and 60 mm.The results show that the new experimental method can reduce the influence of end effect on the measurement of uniaxial compressive strength of rock and obtain more uniform radial strain.Compared with the specimens with the height of 50 mm and 60 mm,the uniaxial compressive strength of the specimens with the height of (25+50+25)mm and (20+60+20)mm is reduced by 38.41% and 39.69% respectively,ad-ditionally,the strength is also decreased comparing with the standard specimen.Numerical simulation results show that the uniaxial compressive strength of the combined specimen with or without end friction is close to the uniaxial compressive strength of the standard specimen in ideal state.All of the specimens have uniform radial strain without end friction.The radial strain of the combined specimen is relatively uniform when there is end effect.Numerical simulation results prove that the new experimental method reduces the end effect,but it can’t completely eliminate the end effect.

Key words: rock mechanics, end effect, uniaxial compression, numerical simulation, sandstone, cushion block, strain distribution

中图分类号: 

  • TD315

图1

组合试件形式"

表1

试验方案"

试验编号上垫块高度/mm待测试件高度/mm下垫块高度/mm
10500
20600
3206020
4255025
501000

表2

岩石试件单轴抗压强度"

试件类型试件高度/mm单轴抗压强度(均值)/MPa单轴抗压强度降低幅度/%
单一试件5060.7938.41
组合试件25+50+2537.44
单一试件6067.6239.69
组合试件20+60+2040.78
标准试件10056.73

图2

试件不同位置的径向应变"

图3

各组试验岩石破坏形式"

图4

数值模型"

表3

数值模型参数"

模型体积模量 /GPa剪切模量 /GPa弹性模量 /GPa泊松比黏聚力 /MPa内摩擦角 /(°)
岩石3.32.050.251245
压头111.183.32000.20--

表4

不同方案接触面参数"

试验方案有无摩擦接触面 编号接触面参数
黏聚力/MPa内摩擦角/(°)
1接触面-100
接触面-2830
2接触面-1415
接触面-2830

表5

各组试验单轴抗压强度"

模型有无摩擦单轴抗压强度/MPa
5058.32
86.67
25+50+2558.09
58.60
10059.27
58.04

图5

剖面位置"

图6

无端部摩擦的径向应变云图"

图7

无端部摩擦不同位置径向应变"

图8

有端部摩擦的径向应变云图"

图9

有端部摩擦不同位置径向应变"

Akai K,Mori H,1967.Study on the failure mechanism of a sandstone under combined compressive stresses[J].Transaction of Japan Society of Civil Engineering,147:11-24.
Al-Chalabi M,Huang C L,1974.Stress distribution within circular cylinders in compression[J].International Journal of Rock Mechanics and Mining Science&Geomechanics Abstract,11(2):45-56.
Bai Shiwei,Lin Shisheng,Zhu Weishen,1982.Uniformity of stress distributions in rock cylinder specimen under uniaxial compression[J].Chinese Journal of Geotechnical Engineering,4(4):193-203.
Brady B T,1971.Effects of inserts on the elastic behavior of cylindrical materials loaded between rough end-plates[J].International Journal of Rock Mechanics and Mining Science,8:357-369.
Fan Pengxian,Wang Jiabo,Liu Jiagui,al et,2019.The influence of end condition on the test strength of red sandstone samples[J].Journal of Basic Science and Engineering,29(2):426-437.
Geng Yongming,2019.Study on Best Aspect Ratio of Standard Test Specimens for Rock Material During Deformation and Failure[D].Lanzhou:Lanzhou University.
Guo Baohua,2009.Numerical analysis of size scale,inner hole and end restraint effects of rock samples[J].Chinese Journal of Rock Mechanics and Engineering,28(Supp.2):3391-3401.
Hou Hongtao,Zhang Sheng,Wu Guofeng,2015.Influence of stress distribution regulation of sample ends on uniaxial compression with pad[J].Journal of Anhui University of Science and Technology (Natural Science),35(3):59-62.
Liang Zhengzhao,2005.Three-dimensional Failure Process Analysis of Rock and Associated Numerical Tests[D].Shenyang:Northeastern University.
Liang Zhengzhao,Tang Chun’an,Zhang Juanxia,al et,2007.Three-dimensional damage model for failure process of rocks and associated numerical simulation of geometry effect[J].Rock and Soil Mechanics,(4):699-704.
Liang Zhengzhao,Wu Xiankai,Tang Shibin,al et,2018.Numerical simulation on end effect of rock specimens based on the anisotropic interface element model[J].Journal of Basic Science and Engineering,26(3):526-537.
Liu Jiguo,Zeng Yawu,2005.Numerical simulation of the end frictional effect of rock specimens[J].Journal of Engineering Geology,13(2):297-251.
Pan Pengzhi,Zhou Hui,Feng Xiating,2008.Research on effect of loading conditions on failure processes of rocks with different sizes under uniaxial compression[J].Chinese Journal of Rock Mechanics and Engineering,(Supp.2):3636-3642.
Peng S D,1971.Stresses within elastic circular cylinders loaded uniaxially and triaxially[J].International Journal of Rock Mechanics and Mining Science,8(5):339-432.
Szczepanik Z,Milne D,Hawkes C,2007.The confining effect of end roughness on unconfined compressive strength [C]//The Proceedings of the 1st Canada-US Rock Mechanics Symposium-Rock Mechanics Meeting Society’s Challenges and Demands. London:Taylor&Francis Ltd:793-797.
Tang C,Tham L,Lee P,al et,2000.Numerical studies of the influence of microstructure on rock failure in uniaxial compression — Part II:Constraint,slenderness and size effect[J].International Journal of Rock Mechanics and Mining Sciences,37(4):571-583.
Wang Xuebin,Pan Yishan,Sheng Qian,al et,2002.Numerical simulation on strain localization of end constraint of rock specimen[J].Journal of Engineering Geology,10(3):233-236.
You Mingqing,2016.End effects on strengths of rocks under true triaxial compression[J].Chinese Journal of Rock Mechanics and Engineering,35(Supp.1):2603-2607.
You Mingqing,2018.Study on ends effect in conventional triaxial compression test and the strengths property of granites[J].Chinese Journal of Rock Mechanics and Engineering,37(Supp.1):3160-3168.
You Mingqing,Hua Anzeng,1997.The size effect of uniaxial compression of rock specimen and support capacity of ore pillar[J].Journal of China Coal Society,(1):39-43.
You Mingqing,Su Chengdong,2004.Effect of length of fine and coarse crystal marble specimens on uniaxial compression tests[J].Chinese Journal of Rock Mechanics and Engineering,(22):3754-3760.
You Mingqing,Zou Youfeng,2000.Discussion on heterogeneity of rock material and size effect on specimen strength[J].Chinese Journal of Rock Mechanics and Engineering,(3):391-395.
Yu Jian,Wang Yanyan,Wang Qing,al et,2019.Study of triaxial mechanical test based on MSV method for reducing end friction effect[J].Journal of China Three Gorges University(Natural Sciences),41(5):59-64.
白世伟,林世胜,朱维申,1982.单轴压缩圆柱状岩石试件应力分布均匀性的研究[J].岩土工程学报,4(4):193-203.
范鹏贤,王贾博,刘家贵,等,2019.端部条件对红砂岩试件测试强度影响的试验研究[J].应用基础与工程科学学报,29(2):426-437.
耿永明,2019.岩石材料标准试件变形破坏的最佳长径比研究[D].兰州:兰州大学.
郭保华,2009.岩样尺度、孔道及端部摩擦效应的数值分析[J].岩石力学与工程学报,28(增2):3391-3401.
侯宏涛,张盛,吴国峰,2015.垫块对单轴压缩试样端部应力分布规律的影响[J].安徽理工大学学报(自然科学版),35(3):59-62.
梁正召,2005.三维条件下的岩石破裂过程分析及其数值实验方法研究[D].沈阳:东北大学.
梁正召,唐春安,张娟霞,等,2007.岩石三维破坏数值模型及形状效应的模拟研究[J].岩土力学,(4):699-704.
梁正召,吴宪锴,唐世斌,等,2018.基于各向异性界面单元的岩石端部效应数值模拟[J].应用基础与工程科学学报,26(3):526-537.
刘继国,曾亚武,2005.岩石试件端面摩擦效应数值模拟研究[J].工程地质学报,13(2):297-251.
潘鹏志,周辉,冯夏庭,2008.加载条件对不同尺寸岩石单轴压缩破裂过程的影响研究[J].岩石力学与工程学报,(增2):3636-3642.
王学滨,潘一山,盛谦,等.2002.岩石试件端面效应的变形局部化数值模拟研究[J].工程地质学报,10(3):233-236.
尤明庆,2016.端部效应对岩石真三轴压缩强度的影响[J].岩石力学与工程学报,35(增1):2603-2607.
尤明庆,2018.常规三轴压缩的端部效应及花岗岩强度的研究[J].岩石力学与工程学报,37(增1):3160-3168.
尤明庆,华安增,1997.岩样单轴压缩的尺度效应和矿柱支承性能[J].煤炭学报,(1):39-43.
尤明庆,苏承东,2004.大理岩试样的长度对单轴压缩试验的影响[J].岩石力学与工程学报,(22):3754-3760.
尤明庆,邹友峰,2000.关于岩石非均质性与强度尺寸效应的讨论[J].岩石力学与工程学报,(3):391-395.
余健,王岩岩,王晴,等,2019.基于MSV方法削弱端部摩擦效应的三轴力学试验研究[J].三峡大学学报(自然科学版),41(5):59-64.
[1] 胡建华,董喆喆,马少维,秦亚光,徐晓,代转. 应力—渗流耦合作用下损伤岩石渗流特性[J]. 黄金科学技术, 2021, 29(3): 355-363.
[2] 王卫华,罗杰,刘田,韩震宇. 节理粗糙度对应力波传播及试样破坏影响的颗粒流模拟[J]. 黄金科学技术, 2021, 29(2): 208-217.
[3] 卢蓉,马凤山,赵杰,郭捷,顾金钟,黄业强. 充填体室内单轴压缩试验声发射指标特性分析[J]. 黄金科学技术, 2021, 29(2): 218-225.
[4] 邓红卫,田广林. 基于CiteSpace可视化分析下2013~2020年冻融岩石力学热点研究探析[J]. 黄金科学技术, 2021, 29(2): 275-286.
[5] 谢学斌,高山,过江,叶永飞. 地震动荷载下深埋巷道压力拱高度响应规律的数值模拟研究[J]. 黄金科学技术, 2021, 29(2): 226-235.
[6] 金鹏,刘科伟,李旭东,杨家彩. 深部岩体水耦合爆破裂纹扩展数值模拟研究[J]. 黄金科学技术, 2021, 29(1): 108-119.
[7] 胡建华,庞乐,王学梁,郑明华. 基于正交试验的过断层软破段巷道支护参数优化[J]. 黄金科学技术, 2020, 28(6): 859-867.
[8] 王成龙,侯成录,杨尚欢,赵兴东. 千米深井高应力破碎围岩控制技术[J]. 黄金科学技术, 2020, 28(6): 885-893.
[9] 李泽佑, 黄锐, 赵淑琪, 沈学, 吴娥. 高海拔矿山独头巷道通风降尘方法优选[J]. 黄金科学技术, 2020, 28(5): 743-752.
[10] 苏怀斌, 张钦礼, 张德明, 曾长根, 朱晓江. 穰家垅银矿大规模充填采矿采场结构参数优化研究[J]. 黄金科学技术, 2020, 28(4): 550-557.
[11] 贺桂成, 陈科旭, 戴兵, 王程程. 十字交叉裂隙扩展机理试验与数值模拟研究[J]. 黄金科学技术, 2020, 28(4): 509-520.
[12] 寇永渊, 李光, 邹龙, 马凤山, 郭捷. 金川二矿区+1 000 m中段水平矿柱回采方法研究[J]. 黄金科学技术, 2020, 28(3): 353-362.
[13] 毛思羽, 曹平, 李建雄, 欧传景. 基于核磁共振T2谱图的裂隙砂岩疲劳损伤分析[J]. 黄金科学技术, 2020, 28(3): 430-441.
[14] 王程程, 罗鑫尧, 陈科旭, 戴兵, 贺桂成. 含预制裂隙类岩石裂隙演化与破裂特征的试验研究[J]. 黄金科学技术, 2020, 28(3): 421-429.
[15] 胡健, 宫凤强, 贾航宇. SHPB压缩试验中红砂岩的力学与能量耗散特性研究[J]. 黄金科学技术, 2020, 28(3): 411-420.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!