img

QQ群聊

img

官方微信

高级检索

黄金科学技术 ›› 2020, Vol. 28 ›› Issue (5): 621-636.doi: 10.11872/j.issn.1005-2518.2020.05.128

• 绿色胶凝材料专栏 • 上一篇    下一篇

有色冶金渣制备胶凝材料研究现状与展望

郭利杰1,2(),张雷1,2,李文臣1,2   

  1. 1.矿冶科技集团有限公司,北京 100160
    2.国家金属矿绿色开采国际联合研究中心,北京 102628
  • 收稿日期:2020-07-17 修回日期:2020-08-25 出版日期:2020-10-31 发布日期:2020-11-05
  • 作者简介:郭利杰(1980-),男,河南南乐人,教授,博士,从事矿山充填技术与矿冶固废资源化利用方面的研究工作。guolijie@bgrimm.com
  • 基金资助:
    国家重点研发计划项目“基于有色冶炼渣的绿色充填胶凝材料制备及其性能合作研究”(2017YFE0107000)

Progress and Prospects of the Preparation of Cementitious Materials Based on Nonferrous Metallurgical Slags

Lijie GUO1,2(),Lei ZHANG1,2,Wenchen LI1,2   

  1. 1.BGRIMM Technology Group,Beijing 100160,China
    2.National Centre for International Research on Green Metal Mining,Beijing 102628,China
  • Received:2020-07-17 Revised:2020-08-25 Online:2020-10-31 Published:2020-11-05

摘要:

有色冶金渣是有色金属冶炼的副产品,利用有色冶金渣制备可替代水泥的胶凝材料,是实现有色冶金固废大宗量资源化利用的重要途径之一。本文从有色冶金渣成分与结构特征、潜在的胶凝活性及其评价、活性激发方法、胶凝材料制备工艺和胶结体性能5个方面,系统总结了国内外有关有色冶金渣制备胶凝材料的研究进展和成果。目前有色冶金渣制备胶凝材料以试验研究阶段为主,大规模工业化应用案例较少,究其根本原因是尚未彻底突破有色冶金渣低活性有效激发的瓶颈难题。基于此研究,提出了从源头改变有色冶金渣结构,是破解大宗固废规模化利用的关键,讨论了其制备胶凝材料过程中应深入研究的重要问题,阐明了未来应重点关注的研究方向,加快拓展有色冶金渣胶凝材料制备技术的工业化应用。

关键词: 有色冶金渣, 胶凝材料, 铜渣, 镍渣, 铅锌渣, 活性激发, 水化反应

Abstract:

Nonferrous slag,a by-product of the nonferrous metal smelting process,can be used as a replacement for cement in the preparation of cementitious materials,which is a critical way to utilize large amounts of non-ferrous metallurgical solid waste resources.This study systematically analyzed to shed light on the latest research progress and achievements on the cementitious materials mainly prepared with the non-ferrous metallurgical slags both in China and abroad.Particularly,five aspects are emphasized in this paper,which are the composition and structural characteristics of nonferrous slag,potential cementitious properties,the activation method of slag,the preparation methods of cementitious materials,and the performance of its cemented body,respectively.The results showed as below:First,the mineral composition and structures of nonferrous slag differed widely.The crystallization of silicate mineral is almost complete and has high chemical stability,but the content of the vitreous body is lower.Second,the evaluation method of nonferrous slag potential gelling activity and the activity evaluation criteria are inconsistent.Third,the combination of phase modification and compound activation method could effectively improve the gelling activity of nonferrous slag.Fourth,nonferrous slag cementitious materials has good durability and high-temperature resistance and has certain properties of heavy metal solidification.At present,the preparation of cementitious materials based on nonferrous slag is mainly laboratory-based with few examples of large-scale industrial applications.The fundamental reason is that the problem of low and insufficient activity of nonferrous metallurgical slag has not yet been completely solved.As such,changing the structural characteristics of non-ferrous metallurgical slag is the key to overcoming the obstacles to its large-scale industrial utilization.Followed by this,the paper next discussed some important issues involved in the preparation process of cementitious materials and highlights the importance of the establishment of a non-ferrous metallurgical slag cementing system configuration database,the use of molecular research on simulation optimization of activation methods,and the development of simple and efficient activation methods,all in an effort to hasten the expansion of the future industrial application of non-ferrous slag cementitious materials preparation technology.

Key words: nonferrous slag, cementitious materials, copper slag, nickel slag, lead-zinc slag, activation, hydration reaction

中图分类号: 

  • TU526

图1

不同种类有色冶金渣形貌"

表1

不同类型铜渣化学组成"

冶金渣类型化学成分/%资料来源
SiO2Al2O3Fe2O3CaOMgOSO3Na2O
铜渣33.623.6555.601.121.511.120.37Gupta等[14]
39.147.7630.4813.412.090.461.05Nazer等[15]
38.338.1720.4026.102.140.260.64Nazer等[15]
33.052.7953.456.061.561.890.28Al-Jabri等[16]
34.603.2039.002.205.303.700.60李文臣等[17]
35.466.7138.9311.522.83-0.43李峰[18]
17.886.6456.165.864.660.160.70杜海云等[19]

表2

不同类型镍渣化学组成"

冶金渣类型化学成分/%资料来源
SiO2Al2O3Fe2O3CaOMgOSO3Na2O
电炉镍渣52.276.194.208.7726.93--Yang等[20]
48.653.418.051.3531.28--Qi等[21]
52.653.4111.361.9427.92--齐太山等[22]
高炉镍渣34.618.2642.013.378.86-0.02Wang[23]
30.5426.741.5421.6112.471.58-齐太山等[22]
29.9526.311.5525.318.930.851.01Huang等[24]

表3

不同类型铅锌渣化学组成"

冶金渣类型化学成分/%资料来源
SiO2Al2O3Fe2O3CaOMgONa2OSO3
铅锌渣27.107.6535.3017.954.70--Nath[25]
30.677.2729.7312.483.270.723.06Zhang等[26]
18.484.0410.906.300.510.264.20史采星等[27]
30.767.2830.0911.801.931.652.41Xia等[28]

图2

典型有色冶金渣化学成分分布"

图3

不同种类有色冶金渣矿物组成[27,30-31]"

图4

中钙复合体系微粉XRD图谱[38]"

图5

不同粉磨时间铜渣状态[45]"

图6

研磨时间对铜渣强度和比表面积的影响[45]"

图7

Glukhovsky机理模型[55]"

图8

有色冶金渣水淬粒化系统[56]1-水箱;2-水箱盖;3-受渣管;4-管道进水;5-排水管;6-感应炉"

图9

增钙水淬后玻璃相结构示意图[56]"

图10

有色冶金渣胶凝材料制备方法"

图11

复合胶凝材料水化放热曲线[68]GGBS5-50%水泥+50%矿粉;BFFN3-70%水泥+30%高炉镍铁渣;BFFN5-50%水泥+50%高炉镍铁渣"

图12

不同掺量铜渣砂浆抗压强度[71]注:掺量为铜渣用量与水泥的质量比"

图13

水泥和碱激发铜渣砂浆中碱集料反应膨胀现象随时间的发展[74]注:图中A4S1.5表示碱掺量为4%,水玻璃模数为1.5,其他依此类推;OPC为水泥"

图14

高温下碱激发铜渣及水泥铜渣砂浆质量损失[30]CCM0-水泥;CCM5-95%水泥+5%铜渣;CCM10-90%水泥+10%铜渣;CCM15-85%水泥+15%铜渣;AACM6-碱激发铜渣,碱浓度为6 M;AACM8-碱激发铜渣,碱浓度为8 M;AACM10-碱激发铜渣,碱浓度为10 M;AACM12-碱激发铜渣,碱浓度为12 M"

图15

固化样品中重金属的浸出浓度[28]"

1 易坚,杨晓松.铅锌冶炼行业产排污系数核算方法及应用[J].有色金属,2008(3):124-128.
Yi Jian,Yang Xiaosong.Calculation method and application of emission coefficient in lead zinc smelting industry[J].Nonferrous Metals,2008(3):124-128.
2 国家发展和改革委员会.中国资源综合利用年度报告(2014)[R].北京:国家发展和改革委员会,2014.
National Development and Reform Commission.Annual report on comprehensive utilization of resources in China(2014)[R].Beijing:National Development and Reform Commission,2014.
3 Piatak N M,R R Ⅱ Seal.Mineralogy and the release of trace elements from slag from the Hegeler Zinc smelter,Illinois(USA)[J].Applied Geochemistry,2010,25(2):302-320.
4 Manz M,Castro L J.The environmental hazard caused by smelter slags from the STA.Maria de la PAZ mining districtin Mexico[J].Environmental Pollution,1997,98(1):7-13.
5 李天杰.土壤环境学[M].北京:高等教育出版社,1995.
Li Tianjie.Soil Environment[M].Beijing:Higher Education Press,1995.
6 Song J,Guo Z H,Xiao X Y,et al.Environmental availability and profile characteristics of arsenic,cadmium,lead and zinc in metal-contaminated vegetable soils[J].Transactions of Nonferrous Metals Society of China,2009(3):765-772.
7 Mosavinezhad S H G,Nabavi S E.Effect of 30% ground granulated blast furnace,lead and zinc slags as sand replacements on the strength of concrete[J].KSCE Journal of Civil Engineering,2012,16(6):989-993.
8 王璐瑶.基于地聚化的冶金固废的无害化处置[J].绿色科技,2020(4):34-35.
Wang Luyao.The harmless disposal of metallurgical solid wastes based on geopolymerization[J].Green Technology,2020(4):34-35.
9 崔孝炜,狄燕清,冷欣燕,等.冶金渣胶凝材料协同固化铅的试验研究[J].矿产保护与利用,2018(6):103-106.
Cui Xiaowei,Di Yanqing,Leng Xinyan,et al.Experimental study on synergistic solidification of lead by metallurgical slag cementing materials[J].Mineral Protection and Utilization,2018(6):103-106.
10 韩雪.冶金行业含铁固体废弃物资源化综合利用研究[J].中国资源综合利用,2018,36(11):58-60.
Han Xue.Research on comprehensive utilization of iron-containing solid waste in the metallurgical industry[J].Comprehensive Utilization of Resources in China,2018,36(11):58-60.
11 刘先阳,李杰,张琳,等.铜渣深度还原回收铁技术进展[J].现代化工,2019,39(3):31-34.
Liu Xianyang,Li Jie,Zhang Lin,et al.Progress of iron recovery technology by deep reduction of copper slag[J].Modern Chemical Industry,2019,39(3):31-34.
12 殷素红,马健,颜波,等.几种不同镍渣的特性及其用于水泥和混凝土中的可行性[J].硅酸盐通报,2019,38(7):2268-2273,2280.
Yin Suhong,Ma Jian,Yan Bo,et al.Characteristics of several different nickel slag and their feasibility in cement and concrete [J].Silicate Bulletin,2019,38(7):2268-2273,2280.
13 肖忠明,王昕,霍春明,等.焦作铅锌渣用做混合材料对水泥性能的影响[J].广东建材,2009,25(10):22-25.
Xiao Zhongming,Wang Xin,Huo Chunming,et al.Effect of Jiaozuo lead zinc slag as mixed material on cement properties [J].Guangdong Building Materials,2009,25(10):22-25.
14 Gupta N,Siddique R.Durability characteristics of self-compacting concrete made with copper slag[J].Construction and Building Materials,2020,247:118580.
15 Nazer A,Paya J,Borrachero M V,et al.Use of ancient copper slags in Portland cement and alkali activated cement matrices[J].Journal of Environmental Management,2016,167:115-123.
16 Al-Jabri K S,Taha R,Alhashmi A,et al.Effect of copper slag and cement by-pass dust addition on mechanical properties of concrete[J].Construction and Building Materials,2006,20(5):322-331.
17 李文臣,郭利杰,杨超,等.碱激发铜镍水淬冶炼渣制备充填胶凝材料研究[J].中国矿业,2020(7):122-127.
Li Wenchen,Guo Lijie,Yang Chao,et al.Study on preparation of filling cementitious materials with alkali activated copper nickel water quenched smelting slag [J].China Mining,2020(7):122-127.
18 李锋.水淬铜渣的火山灰活性[J].福州大学学报(自然科学版),1999,27(2):87-91.
Li Feng.Pozzolanic activity of water quenched copper slag[J].Journal of Fuzhou University(Natural Science Edition),1999,27(2):87-91.
19 杜海云,马倩敏,郭荣鑫,等.铜渣—水泥复合胶凝材料力学性能研究[J].硅酸盐通报,2017,36(5):1634-1638,1645.
Du Haiyun,Ma Qianmin,Guo Rongxin,et al.Mechanical properties of copper slag cement composite cementitious materials[J].Silicate Bulletin,2017,36(5):1634-1638,1645.
20 Yang T,Yao X,Zhang Z H.Geopolymer prepared with high-magnesium nickel slag:Characterization of properties and microstructure[J].Construction and Building Ma-terials,2014,59:188-194.
21 Qi W,Yu C J,Yang J M,et al.Influence of nickel slag powders on properties of magnesium potassium phosphate cement paste[J].Construction and Building Materials,2019,205:668-678.
22 齐太山,王永海,周永祥,等.高炉镍铁渣粉辅助胶凝材料性能研究[J].混凝土,2017(4):108-111.
Qi Taishan,Wang Yonghai,Zhou Yongxiang,et al.Study on properties of blast furnace nickel iron slag auxiliary cementitious material[J].Concrete,2017(4):108-111.
23 Wang Z J,Ni W,Jia Y,et al.Crystallization behavior of glass ceramics prepared from the mixture of nickel slag,blast furnace slag and quartz sand[J].Journal of Non-Crystalline Solids,2010,356(31/32):1554-1558.
24 Huang Y D,Wang Q,Shi M X.Characteristics and reactivity of ferronickel slag powder[J].Construction and Building Materials,2017,156:773-789.
25 Nath S K.Fly ash and zinc slag blended geopolymer:Immobilization of hazardous materials and development of paving blocks[J].Journal of Hazardous Materials,2020,387:121673.
26 Zhang P,Muhammad F,Yu L,et al.Self-cementation solidification of heavy metals in lead-zinc smelting slag through alkali-activated materials[J].Construction and Building Materials,2020,249:118756.
27 史采星,郭利杰,李文臣,等.铅锌冶金渣充填胶凝材料研究及应用[J].黄金科学技术,2018,26(2):160-169.
Shi Caixing,Guo Lijie,Li Wenchen,et al.Research and application of cementitious materials filled with lead-zinc metallurgical slag[J].Gold Science and Technology,2018,26(2):160-169.
28 Xia M,Muhammad F,Zeng L,et al.Solidification/stabilization of lead-zinc smelting slag in composite based geopolymer[J].Journal of Cleaner Production,2019,209:1206-1215.
29 王光伟,张桥,施引珍.镍铁渣安定性检验方法及评定依据[J].江西建材,2015(12):190-193.
Wang Guangwei,Zhang Qiao,Shi Yinzhen.Stability test method and evaluation basis of nickel iron slag[J].Jiangxi Building Materials,2015(12):190-193.
30 Ma Q M,Du H Y,Zhou X T,et al.Performance of copper slag contained mortars after exposure to elevated temperatures[J].Construction and Building Materials,2018,172:378-386.
31 Zhang Q L,Ji T,Yang Z X,et al.Influence of different activators on microstructure and strength of alkali-activated nickel slag cementitious materials[J].Construction and Building Materials,2020,235:117449.
32 何伟,周予启,王强.铜渣粉作为混凝土掺合料的研究进展[J].材料导报,2018,32(23):4125-4134.
He Wei,Zhou Yuqi,Wang Qiang.Research progress of copper slag powder as concrete admixture[J].Materials Guide,2018,32(23):4125-4134.
33 李沙,代文彬,潘德安,等.镍铁渣用于水泥及混凝土的资源化研究综述[J].硅酸盐通报,2019,38(6):1764-1768.
Li Sha,Dai Wenbin,Pan De’an,et al.A review on the utilization of ferronickel slag in cement and concrete[J].Silicate Bulletin,2019,38(6):1764-1768.
34 李保亮,王月华,潘东,等.电弧炉镍铁渣砂和镍铁渣粉的组成特性与适用性分析[J].材料导报,2019,33(22):3752-3756.
Li Baoliang,Wang Yuehua,Pan Dong,et al.Composition characteristics and applicability analysis of nickel iron slag sand and nickel iron slag powder for electric arc furnace[J].Material Guide,2019,33(22):3752-3756.
35 杨慧芬,苑修星,王亚运,等.高MgO镍铁渣作为活性混合材使用的可行性分析[J].重庆大学学报,2016,39(3):51-57.
Yang Huifen,Yuan Xiuxing,Wang Yayun,et al.Feasibility analysis of using high MgO nickel iron slag as active admixture[J].Journal of Chongqing University,2016,39(3):51-57.
36 中华人民共和国国家质量监督检验检疫总局.用于水泥和混凝土中的粒化高炉矿渣粉:GBT18046-2008[S].北京:中国标准出版社,2008.
General Administration of Quality Supervision,Inspection and Quarantine of the People’s Republic of China.Ground granulated blast furnace slag used for cement and concrete:GBT18046-2008[S].Beijing:China Standard Press,2008.
37 中华人民共和国国家质量监督检验检疫总局.用于水泥中的粒化高炉矿渣:GB/T 203-2008[S].北京:中国标准出版社,2008.
General Administration of Quality Supervision,Inspection and Quarantine of the People’s Republic of China.Granulated blastfurnace slag used for cement production:GBT203-2008[S].Beijing:China Standard Press,2008.
38 Zhang D W,Wang D M,Zhang T,et al.The study of the structure rebuilding and yield stress of 3D printing geopolymer pastes[J].Construction and Building Materials,2018,184:575-580.
39 廉慧珍,张志龄,王英华.火山灰质材料活性的快速评定方法[J].建筑材料学报,2001(3):100-105.
Lian Huizhen,Zhang Zhiling,Wang Yinghua.Rapid evaluation method for the activity of pozzolanic materials [J].Acta Building Materials,2001(3):100-105.
40 郭伟,李东旭,陈建华,等.煤矸石火山灰活性的快速评价方法[J].硅酸盐学报,2007(4):489-494.
Guo Wei,Li Dongxu,Chen Jianhua,et al.Rapid evaluation method for pozzolanic activity of coal gangue [J].Acta Silicate Sinica,2007(4):489-494.
41 林博.利用铅锌渣配料生产普通水泥[J].水泥工程,2000(5):30-31.
Lin Bo.Production of ordinary cement with lead zinc slag[J].Cement Engineering,2000(5):30-31.
42 田万东.用铅锌渣代替钢屑冶炼硅钙钡铝合金试验[J].铁合金,2011(1):22-24.
Tian Wandong.Experiment on smelting silicon calcium barium aluminum alloy with lead zinc slag instead of steel chips[J].Ferroalloy,2011(1):22-24.
43 张雄,鲁辉,张永娟,等.矿渣活性激发方式的研究进展[J].西安建筑科技大学学报(自然科学版),2011,43(3):379-384.
Zhang Xiong,Lu Hui,Zhang Yongjuan,et al.Research progress on activation mode of slag activity [J].Journal of Xi’an University of Architecture and Technology (Natural Science Edition),2011,43(3):379-384.
44 Hallet V,De Belie N,Pontikes Y.The impact of slag fineness on the reactivity of blended cements with high-volume non-ferrous metallurgy slag[J].Construction and Buil-ding Materials,2020,257:119400.
45 Lan W T,Wu A X,Yu P.Development of a new controlled low strength filling material from the activation of copper slag:Influencing factors and mechanism analysis[J].Jou-rnal of Cleaner Production,2019,246:119060.
46 宋军伟,刘松柏,周永祥,等.铜渣的粉磨特性及对水泥净浆强度的影响[J].江西建材,2020(4):12-13,16.
Song Junwei,Liu Songbai,Zhou Yongxiang,et al.Grinding characteristics of copper slag and its influence on cement paste strength[J].Jiangxi Building Materials,2020(4):12-13,16.
47 黄丽萍,马倩敏,郭荣鑫,等.水玻璃碱浓度和模数对碱矿渣胶凝材料孔隙液化学组成影响试验研究[J].硅酸盐通报,2019,38(3):799-804.
Huang Liping,Ma Qianmin,Guo Rongxin,et al.Experimental study on the effect of alkali concentration and modulus of sodium silicate on the chemical composition of pore fluid of alkali slag cementitious materials[J].Silicate Bulletin,2019,38(3):799-804.
48 王冬冬,潘志华,李栓民,等.矿渣活性激发过程中铝硅酸盐物质结构变化的NMR探析[J].硅酸盐通报,2009,28(3):426-430,463.
Wang Dongdong,Pan Zhihua,Li Shuanmin,et al.NMR analysis of the structural change of aluminosilicate during the activation of slag activity[J].Silicate Bulletin,2009,28(3):426-430,463.
49 潘志华,方永浩,赵成朋,等.碱—矿渣—赤泥水泥的研究[J].硅酸盐通报,1999(3):3-5.
Pan Zhihua,Fang Yonghao,Zhao Chengpeng,et al.Study on alkali slag red mud cement [J].Silicate Bulletin,1999(3):3-5.
50 Singh J,Singh S P.Synthesis of alkali-activated binder at ambient temperature using copper slag as precursor[J].Materials Letters,2020,262:127169.
51 Singh J,Singh S P.Evaluating the alkali-silica reaction in alkali-activated copper slag mortars[J].Construction and Building Materials,2020,253:119189.
52 Yang T,Yao X,Zhang Z H.Geopolymer prepared with high-magnesium nickel slag:Characterization of properties and microstructure[J].Construction and Building Ma-terials,2014,59:188-194.
53 Zhang Q L,Ji T,Yang Z X,et al.Influence of different activators on microstructure and strength of alkali-activated nickel slag cementitious materials[J].Construction and Building Materials,2020,235:117449.
54 Zhang Z H,Zhu Y C,Yang T,et al.Conversion of local industrial wastes into greener cement through geopolymer technology:A case study of high-magnesium nickel slag[J].Journal of Cleaner Production,2017,141:463-471.
55 Glukhovsky V D.Soil Silicates,Their Properties,Technology and Manufacturing and Fields of Application[D].Kiev:Civil Engineering Institute,1965.
56 Feng Y,Yang Q X,Chen Q S,et al.Characterization and evaluation of the pozzolanic activity of granulated copper slag modified with CaO[J].Journal of Cleaner Production,2019,232:1112-1120.
57 朱茂兰,王俊娥,陈杭,等.铜渣活化试验研究[J].中国有色冶金,2019(3):83-87.
Zhu Maolan,Wang Jun’e,Chen Hang,et al.Experimental study on activation of copper slag[J].China Nonferrous Metallurgy,2019(3):83-87.
58 潘伟才,王天頔.活化铜矿渣的组成及胶凝特性的研究[J].华南理工大学学报(自然科学版),1993(1):91-99.
Pan Weicai,Wang Tiankai.Study on the composition and gelation properties of activated copper slag[J].Journal of South China University of Technology (Natural Science Edition),1993(1):91-99.
59 Atkinson R J,Hannaford A L,Harris L,et al.Using smelter slag in mine backfill[J].Mining Magazine,1989,160:118-123.
60 Barna R,Moszkowicz P,Gervais C.Leaching assessment of road materials containing primary lead and zinc slags[J].Waste Management,2004,24(9):945-955.
61 Glukhovsky V,Rostovskaja G,Rumyna G.High strength slag-alkaline cements[C].7th International Congress on the Chemistry of Cement,1980,3:164-168.
62 孙双月,蔡靖.利用铅锌冶炼废渣制备碱激发胶凝材料的实验研究[J].广东化工,2016,43(5):39-40.
Sun Shuangyue,Cai Jing.Experimental study on Preparation of alkali activated cementitious materials from lead zinc smelting slag[J].Guangdong Chemical Engineering,2016,43(5):39-40.
63 薛杉杉,郭利杰.尾矿与冶炼废渣协同制备新型充填胶凝材料研究[J].江西建材,2015,(12):108-113.
Xue Shanshan,Guo Lijie.Study on the preparation of new filling cementitious materials by tailings and smelting slag[J].Jiangxi Building Materials,2015,(12):108-113.
64 魏岩珂.基于有色冶炼渣的绿色充填胶凝材料制备及其性能研究[D].北京:中国地质大学(北京),2019.
Wei Yanke.Preparation and Properties of Green Filling Cementitious Materials Based on Nonferrous Smelting Slag[D].Beijing:China University of Geosciences (Beijing),2019.
65 张丹.基于铅锌尾矿/铅锌冶金渣制备矿山采空区充填材料的研究[D].北京:中国地质大学(北京),2016.
Zhang Dan.Study on the Preparation of Goaf Filling Materials Based on Lead-Zinc Tailings/Lead-Zinc Metallurgical Slag[D].Beijing:China University of Geosciences(Beijing),2016.
66 Baragano J R,Rey P.The study of a non traditional pozzolan:Copper slags[C]//Proceedings of the 6th International Congress on the Chemistry of Cement.1980.
67 朱街禄,宋军伟,王露,等.铜渣粉—水泥复合胶凝体系的水化热及动力学研究[J/OL].建筑材料学报,1-11.
Zhu Jielu,Song Junwei,Wang Lu,et al.Study on hydration heat and kinetics of copper slag powder cement composite cementitious system[J/OL].Acta Building Materials:1-11.
68 齐太山,周永祥,黄政宇,等.高炉镍铁渣粉在水泥基复合胶凝材料中的水化特性研究[J].硅酸盐通报,2017,36(9):2944-2950,2957.
Qi Taishan,Zhou Yongxiang,Huang Zhengyu,et al.Hydration characteristics of blast furnace nickel iron slag powder in cement-based composite cementitious materials [J].Silicate Bulletin,2017,36(9):2944-2950,2957.
69 王顺祥,吴其胜,诸华军,等.镍渣和超细硅灰对硅酸盐水泥水化性能的影响[J].混凝土与水泥制品,2017(7):81-85.
Wang Shunxiang,Wu Qisheng,Zhu Huajun,et al.Effect of nickel slag and ultra-fine silica fume on hydration performance of portland cement [J].Concrete and Cement Products,2017(7):81-85.
70 Tixier R,Devaguptapu R,Mobasher B.The effect of copper slag on the hydration and mechanical properties of cementitious mixtures[J].Cement and Concrete Research,1997,27(10):1569-1580.
71 Zain M F M,Islam M N,Radin S S,et al.Cement-based solidification for the safe disposal of blasted copper slag[J].Cement and Concrete Composites,2004,26(7):845-851.
72 Al-Jabri K S,Taha R A,Al-Hashmi A,et al.Effect of copper slag and cement by-pass dust addition on mechanical properties of concrete[J].Construction and Building Materials,2006,20(5):322-331.
73 李浩,杨鼎宜,沈武,等.掺镍渣对混凝土耐磨性能的影响研究[J].硅酸盐通报,2015,34(11):3122-3128.
Li Hao,Yang Dingyi,Shen Wu,et al.Study on the effect of nickel slag on the wear resistance of concrete [J].Silicate Bulletin,2015,34 (11):3122-3128.
74 Singh J,Singh S P.Evaluating the alkali-silica reaction in alkali-activated copper slag mortars[J].Construction and Building Materials,2020,253:119189.
75 Gopalakrishnan R,Nithiyanantham S.Microstructural,mechanical,and electrical properties of copper slag admixtured cement mortar[J].Journal of Building Engineering,2020:101375.
76 李大方,周予启,何伟.细度对电炉镍渣水化活性的影响[J].混凝土,2019,352(2):93-97.
Li Dafang,Zhou Yuqi,He Wei.Effect of fineness on hydration activity of nickel slag in electric furnace [J].Concrete,2019,352 (2):93-97.
77 杜海云,郭荣鑫,马倩敏,等.铜渣胶凝材料高温力学性能的实验研究[J].硅酸盐通报,2016(10):3258-3263.
Du Haiyun,Guo Rongxin,Ma Qianmin,et al.Experimental study on high temperature mechanical properties of copper slag cementitious materials [J].Silicate Bulletin,2016(10):3258-3263.
78 Yao L W,Liu D G,Ke Y,et al.Synthesis and hydration characteristic of geopolymer based on lead smelting slag[J].International Journal of Environmental Research and Public Health,2020,17(8):2762.
[1] 叶智远, 王倩倩. 铝硅酸盐固废胶凝材料制备及其性能[J]. 黄金科学技术, 2020, 28(5): 658-668.
[2] 张婷婷, 智士伟, 郭利杰, 武震林, 韩俊南. 铜镍冶炼渣的资源化利用研究进展[J]. 黄金科学技术, 2020, 28(5): 637-645.
[3] 张婷婷, 周子钰, 郭利杰, 武震林, 韩俊南. 矿物掺合料改性铜镍渣胶凝材料的性能研究[J]. 黄金科学技术, 2020, 28(5): 678-687.
[4] 那华, 吕国诚, 张丹, 王丽娟, 廖立兵, 郭利杰, 孔令常, 武丽娟, 卞健华. 矿区典型环境污染及其充填胶凝固定化研究进展[J]. 黄金科学技术, 2020, 28(5): 646-657.
[5] 史采星, 郭利杰, 李文臣, 张丹. 铅锌冶炼渣充填胶凝材料研究及应用[J]. 黄金科学技术, 2018, 26(2): 160-169.
[6] 涂玉波,韩培伟,付国燕,魏连启,仉小猛,于博,叶树峰. 不同胶凝材料对氰化废渣的固化性能研究[J]. 黄金科学技术, 2017, 25(5): 135-139.
[7] 赵汝全,鄢发明,赵捷明,吴彩斌,雷存友,杨斌. 硫酸铜在微细粒嵌布水淬铜渣浮选试验中的应用[J]. 黄金科学技术, 2015, 23(4): 46-51.
[8] 亓传铎,牌洪坤,杨守斌,谢敏雄,王虎,秦香伟,赵在超,王建平. 从冶炼铜渣中进一步提取金银的湿法工艺研究[J]. 黄金科学技术, 2012, 20(5): 88-91.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] 闫杰, 覃泽礼, 谢文兵, 蔡邦永. 青海南戈滩—乌龙滩地区多金属地质特征与找矿潜力[J]. J4, 2010, 18(4): 22 -26 .
[2] 宋贺民, 冯喜利, 丁宪华. 太行山北段交界口矿区地质地球化学特征及找矿方向[J]. J4, 2010, 18(3): 54 -58 .
[3] 李淑芳, 于永安, 朝银银, 王美娟, 张岱, 刘君, 孙亮亮. 在辽东成矿带找寻层控型金矿床靶区[J]. J4, 2010, 18(3): 59 -62 .
[4] 胡琴霞, 李建忠, 喻光明, 谢艳芳, 张圣潇. 白龙江成矿带金矿点初探[J]. J4, 2010, 18(3): 51 -53 .
[5] 陈学俊. 青海直亥买休玛金矿床矿体特征与找矿前景分析[J]. J4, 2010, 18(4): 50 -53 .
[6] 崔廷军, 逯克思, 庄勇, 傅星. 青海省柴达木盆地南缘金成矿带特征及成矿规律浅析[J]. J4, 2010, 18(3): 63 -67 .
[7] 杨明荣, 牟长贤. 原子荧光法测定化探样品中砷和锑的不确定度评定[J]. J4, 2010, 18(3): 68 -71 .
[8] 苏建华, 陆树林. 从高酸低浓度尾液中萃取金的试验[J]. J4, 2010, 18(3): 72 -75 .
[9] 王大平, 宋丙剑, 韦库明. 大功率激电测量在辽宁北水泉寻找隐伏矿床的应用[J]. J4, 2010, 18(3): 76 -78 .
[10] 刘胜光, 高海峰, 黄锁英. 电子手薄在山东焦家金矿地质专业中的应用[J]. J4, 2010, 18(3): 79 -82 .