img

QQ群聊

img

官方微信

高级检索

黄金科学技术 ›› 2019, Vol. 27 ›› Issue (3): 378-384.doi: 10.11872/j.issn.1005-2518.2019.03.378

• 采选技术与矿山管理 • 上一篇    

砂卵石土的剪切流变特性研究

陈沅江(),史志华()   

  1. 中南大学资源与安全工程学院,湖南 长沙 410083
  • 收稿日期:2018-06-13 修回日期:2018-11-07 出版日期:2019-06-30 发布日期:2019-07-09
  • 通讯作者: 史志华 E-mail:syjsafety@126.com;shizhihua1105@163.com
  • 作者简介:陈沅江(1970-),男,湖南湘潭人,博士,副教授,从事岩土与环境安全工程方面的研究工作。syjsafety@126.com
  • 基金资助:
    国家自然科学基金项目“基于深海稀软底质流变分析的履带式集矿机行走特性及结构优化”(51274251)

Shear Rheological Properties of Sandy Pebble Soil

Yuanjiang CHEN(),Zhihua SHI()   

  1. School of Resources and Safety Engineering,Central South University,Changsha 410083,Hunan,China
  • Received:2018-06-13 Revised:2018-11-07 Online:2019-06-30 Published:2019-07-09
  • Contact: Zhihua SHI E-mail:syjsafety@126.com;shizhihua1105@163.com

摘要:

应用RYL-600岩石剪切流变仪对长沙市某边坡砂卵石土试样进行剪切流变试验,分析砂卵石土的剪切流变特性。试验表明正应力越高时,能够引起砂卵石土试件发生剪切流变破坏的剪切应力也随之增高。砂卵石土剪切流变在低于长期抗剪切强度的应力作用下,表现出黏弹特性;在高于长期强度的应力作用下,表现出黏弹塑性。应用五元黏弹性模型与VR黏塑性模型串联得到的黏弹塑性模型对砂卵石土全程流变曲线进行模拟,将拟合结果与试验数据进行分析比较,验证了新模型具有正确性和合理性,这对砂卵石土工程具有重要的指导意义和参考价值。

关键词: 砂卵石土, 长期强度, 黏弹塑性, 剪切流变模型

Abstract:

Sandy pebble soil has been widely used in engineering applications,such as railway subgrade,high earth-rock dams,bridge piers due to its excellent compaction performance and strong water permeability.At present,the research on the mechanical properties of sandy pebble soil at home and abroad mainly focuses on: (1)The dynamic deformation strength characteristics under complex stress state; (2)The effects of different density and water content on the mechanical parameters; (3)The simulation software to reflect the mechanical failure phenomenon of sandy pebble soil and calculate the mechanical parameters.The instability of rock mass is mainly caused by the slippage of rock mass along the failure surface under shear stress,but there was no research on shear rheological properties of sandy pebble soil at home and abroad.Shear rheological tests on sandy pebble soil under different normal stresses was carried out,and mechanical analysis and shear rheological model research were conducted based on experimental data to provide scientific analysis for the stability of sandy pebble soil engineering,thus ensuring long-term safety of sandy pebble soil engineering operations.The specific process of the test was to carry out the shear rheological test of the sandy pebble soil by the stepwise incremental loading method the normal stress of 0.025 MPa and 0.0375 MPa were applied to the two sets of samples,when the stability was stable for more than 24 h.Then the shear stress was applied from the low to the high grading time.When the displacement of the rheology within 24 h was not more than 0.001 mm,the deformation was considered to be relatively stable,and the next-stage shear stress can be applied. Did this until the test piece breaks. The RYL-600 rock shear rheometer recorded the rheological data for the entire process. Some classical viscoelastic models were used to simulate and compare the rheological curves before the accelerated rheology under 0.025 MPa normal stress and 0.203 MPa shear stress. It was known that the five-element viscoelastic model has an accurate simulation on stage before accelerated rheological transformation of sandy pebble soil. Because the accelerated rheological phase highlights the plastic properties of the rock,a new model obtained by connecting the five-element viscoelastic model and the VR viscoplastic model in series was used to fit the accelerated rheological results of the sandy pebble soil. Based on experimental data and analytical simulations,the following conclusions can be drawn: (1)Under the action of low shear stress,sandy pebble soil undergone instantaneous elastic deformation,initial rheological phase with decreasing speed,and constant steady rheological phase.When the shear stress of the sandy pebble soil exceeded its long-term strength,the rheology will continue to develop into an accelerated rheological failure stage. The magnitude of long-term shear strength increased with increasing normal stress.The reason was that the greater the normal stress,the higher the frictional force on the failure surface. (2)Through simulation comparison and analysis,it was found that the viscoelastic-plastic model obtained by connecting the five-element viscoelastic model and the VR viscoplastic model in series had a good fitting effect on the whole process rheological curve of sandy pebble soil.And the instantaneous elastic modulus tended to decrease linearly with the increase of shear stress. Although the viscoelastic shear modulus fluctuated,it was stable within the range of 1~5 MPa/mm. (3)The discrete nature of the particles and the randomness of the geometric distribution of the pebble also had a certain influence on the mechanical properties of the sandy pebble soil. In the future research,new numerical processing methods and simulation software should be adopted to characterize these important parameters,and analyze the specific effects of these parameters on the mechanical properties of sandy pebble soil.

Key words: sandy pebble soil, long-term strength, viscoelastic-plasticity, shear rheological model

中图分类号: 

  • TU455

表1

试验土样的级配"

材料名称 粒径范围/mm 质量分数/%
黏土 <0.075 10.42
卵石 15~40 36.46
5~15 15.62
2~5 10.42
1~2 6.25
0.45~1 8.06
0.3~0.45 5.21
0.2~0.3 4.36
0.075~0.2 3.20

图1

不同正应力下的流变曲线"

图2

0.203 MPa剪切应力下的流变全程曲线"

表2

3种黏弹性流变模型拟合结果比较"

模型类别 流变方程 各级剪应力下的R 2
0.087 MPa 0.116 MPa 0.145 MPa 0.174 MPa 0.203 MPa
五元件模型 u ( t ) = 1 G 1 + 1 G 2 1 - e - G 2 t η 1 + 1 G 3 1 - e - G 3 t η 2 τ 0 0.9993 0.9992 0.9981 0.9997 0.9997
H-K模型 u ( t ) = 1 G 1 + 1 G 2 1 - e - G 2 t η 1 τ 0 0.9189 0.9761 0.9714 0.9854 0.9540
Burgers模型 u ( t ) = 1 G 1 + 1 G 2 1 - e - G 2 t η 1 τ 0 + τ 0 η 2 t 0.9382 0.9207 0.9717 0.9878 0.9977

图3

五元件黏弹性剪切流变模型"

表3

五元黏弹性模型的拟合结果"

正应力/MPa 剪应力/MPa G 1/(MPa·mm-1 G 2/(MPa·mm-1 G 3/(MPa·mm-1 η 1/(MPa·h·mm-1 η 2/(MPa·h·mm-1 R 2
0.025 0.087 3.48 3.3971 2.5094 0.0385 15.3735 0.9993
0.116 0.9206 4.9383 1.0143 3.6196×10-5 4.5713 0.9992
0.145 0.3519 1.3184 2.2681 5.4678 0.0646 0.9981
0.174 0.1494 1.6699 1.2377 5.9145 0.0114 0.9997
0.203 0.0616 1.5184 1.078 25.8812 0.8419 0.9997

图4

砂卵石土黏弹塑性剪切流变模型"

图5

砂卵石土流变数据拟合结果"

1 郭庆国 . 粗粒土的工程特性及应用[M]. 郑州:黄河水利出版社,1998.
Guo Qingguo . Research and Application of the Engineering Properties of Coarse-Grained Soil[M].Zhengzhou: Yellow River Water Conservancy Press,1998.
2 王汝恒,贾彬,邓安福,等 . 砂卵石土动力特性的动三轴试验研究[J].岩石力学与工程学报,2006,25(增2):4059-4064.
Wang Ruheng , Jia Bin , Deng Anfu ,et al . Dynamic triaxial testing study on dynamic characteristics of sandy pebble soil[J]. Chinese Journal of Rock Mechanics and Engineering,2006,25(Supp.2):4059-4064.
3 何建平,彭兴芝,祖烨,等 . 砂卵石土动、静特性的对比试验研究[J]. 长江科学院院报,2010,27(8):40-43.
He Jianping , Peng Xingzhi , Zu Ye ,et al . Experimental study on dynamic and static characteristics of sand and gravel soil[J]. Journal of Yangtze River Scientific Research Institute,2010,27(8):40-43.
4 简鹏,路军富,钟英哲 . 基于不同密度与含水率下的砂卵石强度参数研究[J]. 科学技术与工程,2016,16(24):257-260.
Jian Peng , Lu Junfu , Zhong Yingzhe .Study on strength parameter of sandy pebble soil based on different density and moisture content[J].Science Technology and Engineering,2016,16(24):257-260.
5 吴东旭,姚勇,梅军,等 . 砂卵石土直剪试验颗粒离散元细观力学模拟[J]. 工业建筑,2014,44(5):79-84.
Wu Dongxu , Yao Yong , Mei Jun ,et al .Micromechanics simulation of direct shear test of sandy pebble soil with discrete element method[J]. Industrial Construction,2014,44(5):79-84.
6 胡敏,徐国元,胡盛斌 . 基于Eshelby张量和 Mori-Tanaka 等效方法的砂卵石土等效弹性模量研究[J]. 岩土力学,2013,34(5):1437-1442.
Hu Min , Xu Guoyuan , Hu Shengbin .Study of equivalent elastic modulus of sand gravel soil with Eshelby tensor and Mori-Tanaka equivalent method[J].Rock and Soil Mechanics,2013,34(5):1437-1442.
7 王新刚,胡斌,连宝琴,等 . 西藏邦铺矿区花岗岩剪切流变本构研究及其开挖边坡长期稳定性分析[J].岩土力学,2014,35(12):3496-3502.
Wang Xingang , Hu Bin , Lian Baoqin ,et al .Granite shear rheological constitutive research of Bangpu mining area in Tibet and its excavation slope stability analysis for a long time[J].Rock and Soil Mechanics,2014,35(12):3496-3502.
8 Maranini E , Brignoli M .Creep behavior of a weak rock: Experimental characterization[J].International Journal of Rock Mechanics and Mining Sciences,1999,36(1): 127-138.
9 Shao J F , Zhu Q Z , Su K . Modeling of creep in rock materials in terms of material degradation[J].Computers and Geotechnics,2003,30(7): 549-555.
10 Slizowski J L .Salt-mudstones and rock-salt suitabilityes for radioactive-waste storage systems: Rheological propertypes[J]. Applied Energy,2003,75(1):137-144.
11 Yang C H , Daemen J J K , Yin J H . Experimental investigation of creep behavior of salt rock[J].International Journal of Rock Mechanics and Mining Sciences,1999,36(2):233-242.
12 杨圣奇,徐卫亚,谢守益,等 . 饱和状态下硬岩三轴流变变形与破裂机制研究[J]. 岩土工程学报,2006,28(8):962-969.
Yang Shengqi , Xu Weiya , Xie Shouyi ,et al . Studies on triaxial rheological deformation and failure mechanism of hard rock in saturated state[J].Chinese Journal of Geotechnical Engineering,2006,28(8):962-969.
13 齐亚静,姜清辉,王志俭,等 . 改进西原模型的三维蠕变本构方程及其参数辨识[J]. 岩石力学与工程学报,2012,31(2):347-355.
Qi Yajing , Jiang Qinghui , Wang Zhijian ,et al .3D creep constitutive equation of modified Nishihara model and its parameters identification[J].Chinese Journal of Rock Mechanics and Engineering,2012,31(2):347-355.
14 Fabre G , Pellet F . Creep and time-dependent damage in argillaceous rocks[J].International Journal of Rock Mechanics and Mining Sciences,2006,43(6):950-960.
15 王芝银,李云鹏 . 岩体流变理论及其数值模拟[M]. 北京:科学出版社,2008.
Wang Zhiyin , Li Yunpeng .Rock Rheology Theory and Numerical Simulation[M]. Beijing: Science Press,2008.
16 Li Y S , Xia C C . Time-dependent tests on intact rocks in uniaxial compression[J].International Journal of Rock Mechanics and Mining Sciences,2000,37(3): 467-475.
17 李海洲,杨天鸿,夏冬,等 .基于软岩流变特性的边坡动态稳定性分析[J].东北大学学报,2013,34(2):293-296.
Li Haizhou , Yang Tianhong , Xia Dong ,et al . Slope stability analysis based on soft-rock rheological characteristics[J].Journal of Northeastern University,2013,34(2):293-296.
18 郭万里,朱俊高,温彦锋 .对粗粒科4种级配缩尺方法的统一解释[J].岩土工程学报,2016,38(8):1473-1480.
Guo Wanli , Zhu Jungao , Wen Yanfeng .Unified description for four grading scale methods for coarse aggregate[J].Chinese Journal of Geotechnical Engineering,2016,38(8):1473-1480.
19 孙钧 . 岩石流变力学及其工程应用研究的若干进展[J].岩石力学与工程学报,2007,26(6):1081-1106.
Sun Jun . Rock rheological mechanics and its advance in engineering applications[J].Chinese Journal of Rock Mechanics and Engineering,2007,26(6):1081-1106.
20 张清照,沈明荣,丁文其 . 锦屏绿片岩力学特性及长期强度特性研究[J].岩石力学与工程学报,2012,31(8):1642-1649.
Zhang Qingzhao , Shen Mingrong , Ding Wenqi . Study of mechanical properties and long-term strength of Jinping green schist[J]. Chinese Journal of Rock Mechanics and Engineering,2012,31(8):1642-1649.
21 徐卫亚,杨圣奇 . 节理岩石剪切流变特性试验与模型研究[J]. 岩石力学与工程学报,2005,24(增2):5536-5542.
Xu Weiya , Yang Shengqi .Experiment and modeling investigation on shear rheological property of joint rock[J]. Chinese Journal of Rock Mechanics and Engineering,2005,24(Supp.2):5536-5542.
22 陈亮 .深埋软岩隧道流变特征研究[D].成都:西南交通大学,2014.
Chen Liang .A Study on Rheological Characteristics of Soft Rock Tunnel with a Deep Overburden[D]. Chengdu: Southwest Jiaotong University,2014.
23 王军保,刘新荣,黄明,等 . 低频循环荷载下盐岩轴向蠕变的 Burgers 模型分析[J].岩土力学,2014,35(4):933-941.
Wang Junbao , Liu Xinrong , Huang Ming ,et al . Analysis of axial creep properties of salt rock under low frequency cyclic loading using Burgers model[J]. Rock and Soil Mechanics,2014,35(4):933-941.
24 张明,毕忠伟,杨强,等 .锦屏一级水电站大理岩蠕变试验与流变模型选择[J].岩石力学与工程学报,2010,29(8):1530-1537.
Zhang Ming , Bi Zhongwei , Yang Qiang ,et al .Creep test and rheological model selection of marble of Jinping I hydropower station[J].Chinese Journal of Rock Mechanics and Engineering,2010,29(8):1530-1537.
25 王明芳,胡斌,蒋海飞,等 . 花岗岩剪切流变力学特性试验与模型[J]. 中南大学学报(自然科学版),2014,45(9):3111-3120.
Wang Mingfang , Hu Bin , Jiang Haifei ,et al . Experiment and model investigation on shear rheological mechanical properties of granite[J]. Journal of Central South University (Science and Technology),2014,45(9):3111-3120.
26 中华人民共和国水利部.水力水电工程岩石试验规程:SL264-2001[S]. 北京:中国标准出版社,2001.
The Ministry of Water Resources of the People’s Republic of China.Water conservancy and hydropower project order on rock test:SL264-2001[S]. Beijing:Standards Press of China,2001.
No related articles found!
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!