img

QQ群聊

img

官方微信

高级检索

黄金科学技术 ›› 2019, Vol. 27 ›› Issue (2): 223-231.doi: 10.11872/j.issn.1005-2518.2019.02.223

• 采选技术与矿山管理 • 上一篇    

基于波速测量的岩石储能量化表征方法研究

郭春志1(),马春德1,2(),周亚楠1,刘泽霖1,龙珊1   

  1. 1. 中南大学资源与安全工程学院,湖南 长沙 410083
    2. 中南大学高等研究中心,湖南 长沙 410083
  • 收稿日期:2018-05-15 修回日期:2018-09-18 出版日期:2019-04-30 发布日期:2019-04-30
  • 通讯作者: 马春德 E-mail:17308416105@163.com;cdma@csu.edu.cn
  • 作者简介:郭春志(1993-),男,河南项城人,硕士研究生,从事岩土力学研究工作。17308416105@163.com|马春德(1976-),男,辽宁丹东人,副教授,博士,从事岩体力学与地应力测量方面的研究工作。cdma@csu.edu.cn
  • 基金资助:
    新疆维吾尔自治区重大科技专项“东天山复杂地质特长公路隧道建设关键工程研究与应用——特长公路隧道机械化安全快速施工技术研究”(编号:2018A03003-2)和国家重点研发计划项目“深部岩体力学与开采理论”之“深部高应力诱导与能量调控理论”(编号:2016YFC0600706)

Research on Quantitative Characterization Method of Rock Energy Storage Based on Wave Velocity Measurement

Chunzhi GUO1(),Chunde MA1,2(),Yanan ZHOU1,Zelin LIU1,Shan LONG1   

  1. 1. School of Resources and Safety Engineering, Central South University, Changsha 410083, Hunan, China
    2. Advanced Research Center, Central South University, Changsha 410083, Hunan, China
  • Received:2018-05-15 Revised:2018-09-18 Online:2019-04-30 Published:2019-04-30
  • Contact: Chunde MA E-mail:17308416105@163.com;cdma@csu.edu.cn

摘要:

为了定量化表征岩石储能,选择3类典型岩石(强度较低的红砂岩、中等强度的大理岩和坚硬的花岗岩),在弹性区间内对其压缩载荷(或应力)与纵波波速之间的随动关系进行测试研究,并根据其应力—应变特征曲线,计算出应力与存储能量之间的定量关系,建立以应力为桥梁的“波速—应力—储能”的定量化表征方法。结果表明:在3种典型岩石弹性阶段内,其纵波波速与压缩应力均呈现出明显的线性关系;压缩应力与岩石储能之间基本符合复合幂指数关系;根据卸载波速—应力、应力—弹性储能所建立的模型,可以得到卸载波速与弹性储能之间的对应函数关系,实现了用波速定量化表征岩石储能的目的,即获得了一种较为可行的用波速定量化表征岩石储能的测试技术方法。测试结果还表明:硬岩比软岩更适合采用此方法来定量化表征存储的能量,其精度和准确度更高。

关键词: 典型岩石, 岩石强度, 卸载波速, 弹性储能, 复合幂指数模型, 定量化表征

Abstract:

The underground rock mass stores a large amount of energy,disasters such as rock bursts will occur under certain conditions.The benign application of rock energy storage can not only effectively reduce the sudden release of energy,but also make use of rock energy.But there are still a series of technical problems to be solved in order to make it work.One of the key issues is how to accurately quantify the energy storage of deep rock mass.This study only qualitatively and quantitatively studies the elastic range of rock,using low-intensity red sandstone (sedimentary rock),medium-strength marble (metamorphic rock) and high-strength granite (magmatic rock).The basic idea of ??this study is to explore the relationship between wave velocity and stress in the elastic phase of rock.The model is used to characterize the corresponding stress value by wave velocity,and then explore the relationship between stress and the corresponding energy density.The model uses stress to characterize the energy stored in the rock,and then compares the energy value obtained by the model with the actual energy value to verify the method of characterizing energy with wave velocity.The test results show that the longitudinal wave velocity and the compressive stress show a linear relationship in the three typical rock elastic stages,and the compressive stress and the rock energy storage basically conform to the complex power exponential relationship.The results also show that the theoretical value is not much different from the real value,the error is small,and the hard rock is more suitable than soft rock to be quantified the stored energy with this method,with higher precision and accuracy.In this paper,through the uniaxial repeated loading and unloading test and calculation of the typical rock specimens of marble,granite and red sandstone in the elastic range,the following conclusions are drawn: The three waves exhibit wave velocity with increasing stress.However,when the stress is 30% of the maximum stress,the wave velocity growth of the three rocks is relatively uniform.When the stress exceeds 30% of the maximum stress,the growth rate of marble and granite is still consistent,while the rate of growth of red sandstone is steep.Increase the phenomenon. The wave velocity and stress of the three rocks accord with the linear model.The accuracy of the red sandstone is lower than that of marble and granite.The total energy and elastic energy of the granite are larger than that of marble and red sandstone.The red sandstone has higher dissipative energy than marble and granite. According to the function of unloading wave velocity-stress and stress-elasticity,the wave velocity-elastic energy model is constructed and verified,the overall effect is better,and the accuracy and accuracy of hard rock are higher than that of soft rock.

Key words: typical rock, rock strength, unloaded wave velocity, elastic energy storage, composite exponential model, quantitative characterization

中图分类号: 

  • TU45

图1

带实时测量功能的MTS815型材料试验机"

表1

3种岩石的物理力学参数"

岩石类型密度/(kg·cm-3)单轴抗压强度/MPa弹性强度上限/MPa弹性模量/GPa泊松比
大理岩2 71010584650.24
花岗岩2 63212196520.26
红砂岩2 4265443120.21

图2

应力—应变曲线下覆面积"

图3

加卸载下波速—应力变化关系"

图4

反复加载(a)、卸载(b)后平均相对波速的比较"

图5

加卸载后应力—能量的对应关系"

表2

波速与应力关系拟合表"

岩样加卸载k1/(m·MPa-1·s-1)v0/(m·s-1相关系数(R
大理岩1-加载15.345 0600.976
2-加载14.865 1030.967
3-加载13.385 1000.989
平均值-加载14.535 0880.980
1-卸载14.495 1020.977
2-卸载14.085 1060.976
3-卸载14.145 0880.993
平均值-卸载14.245 1230.986
花岗岩1-加载9.214 5680.961
2-加载8.454 6230.978
3-加载8.384 5760.983
平均值-加载8.684 5890.979
1-卸载8.774 6160.974
2-卸载7.974 6790.969
3-卸载8.454 6000.984
平均值-卸载8.404 6320.979
红砂岩1-加载25.972 6750.964
2-加载24.822 7200.963
3-加载27.972 6460.986
平均值-加载26.262 6800.974
1-卸载24.052 7460.961
2-卸载25.002 7170.967
3-卸载27.592 6600.986
平均值-卸载25.552 7080.975

表3

应力与能量关系拟合表"

岩样加卸载k2(J/MPa)幂指数α相关系数(R
大理岩1-加载0.0031.7980.998
2-加载0.0031.7500.997
3-加载0.0031.7880.998
平均值-加载0.0031.7780.998
1-卸载0.0031.7600.998
2-卸载0.0031.7570.998
3-卸载0.0031.7940.999
平均值-卸载0.0031.7700.998
花岗岩1-加载0.0061.6870.999
2-加载0.0071.6670.999
3-加载0.0071.6480.999
平均值-加载0.0091.5930.996
1-卸载0.0061.6900.999
2-卸载0.0081.6210.998
3-卸载0.0071.6320.998
平均值-卸载0.0071.6680.999
红砂岩1-加载0.0191.7040.999
2-加载0.0191.7000.998
3-加载0.0181.7240.998
平均值-加载0.0191.7090.998
1-卸载0.0201.6710.995
2-卸载0.0191.6840.994
3-卸载0.0241.5950.999
平均值-卸载0.0211.6480.997

表4

大理岩的波速—能量关系对应表"

V/(m·s-1W理论值/JW真实值/J相对误差/%
6 213.008.4488.4960.56
6 167.007.0387.5236.45
6 078.006.0976.5937.52
6 049.335.8065.7141.61
6 006.675.3854.9079.74
5 951.004.4564.1367.74
5 878.673.6053.4205.41
5 787.003.2392.76017.36
5 711.332.4582.17513.01
5 666.002.0321.64623.45
5 570.001.7001.17844.31
5 467.001.3120.77768.85
5 312.000.6110.44936.08
5 203.330.2630.21124.64
5 105.330.0640.08020.00

表5

花岗岩的波速—能量关系对应表"

V/(m·s-1W理论值/JW真实值/J相对误差/%
5 385.0013.19613.3511.16
5 306.0011.60111.6810.68
5 274.6710.78910.5532.24
5 241.339.6159.2813.60
5 207.338.0598.3093.01
5 190.007.6477.3703.76
5 138.006.3416.2551.37
5 106.675.5305.2794.75
5 088.004.6084.4224.21
5 063.673.9843.54012.54
5 003.333.1952.9279.16
4 967.002.5552.17617.42
4 889.672.0381.61426.27
4 799.331.4101.10727.37
4 752.330.5890.69715.49
4 694.670.1210.37267.47
4 668.000.0360.14374.83

表6

红砂岩的波速—能量关系对应表"

V/(m·s-1W理论值/JW真实值/J相对误差/%
3 6108.0888.4994.84
3 5407.3956.8198.45
3 4745.9595.22014.16
3 3624.0813.7119.97
3 2192.3912.3720.80
2 9351.0251.23917.27
2 7730.1670.33650.30
1 ZhangZ Z,GaoF.Research on nonlinear characteristics of rock energy evolution under uniaxial compression[J].Chinese Journal of Rock Mechanics and Engineering,2012,31(6):1198-1207.
2 郭建强,刘新荣,王军保,等.基于弹性应变能的岩石强度准则[J].岩土力学,2016,37(增2):129-136.
GuoJianqiang,LiuXinrong,WangJunbao,et al.Strength criterion of rock based on elastic strain energy[J].Rock and Soil Mechanics,2016,37(Supp.2):129-136.
3 GuoW,WangL,YangD Y.Rock damage research based on the energy principles[J].Applied Mechanics and Materials,2011(87):238-242.
4 TangA J,ShiC G,WangY,et al.Energy characteristics of brittle rock in failure process[J].Applied Mechanics and Materials,2014,580-583:260-263.
5 高红,郑颖人,冯夏庭.岩石材料能量屈服准则研究[J].岩石力学与工程学报,2007,26(12):2437-2443.
GaoHong,ZhengYingren,FengXiating.Study on energy yield criterion of rock materials[J].Rock Mechanics and Rock Engineering,2007,26(12):2437-2443.
6 丛宇,王在泉,郑颖人,等.不同卸荷路径下大理岩破坏过程能量演化规律[J].中南大学学报(自然科学版),2016,47(9):3140-3147.
CongYu,WangZaiquan,ZhengYingren,et al.Energy evolution law of marble failure under different unloading paths[J].Journal of Central South University (Science and Technology),2016,47(9):3140-3147.
7 李果,周承景,张勇,等.地下工程岩爆研究现状综述[J].水利水电科技进展,2013,33(3):77-84.
LiGuo,ZhouChengjing,ZhangYong,et al.Review of rockburst in underground engineering[J].Advances in Science and Technology of Water Resources,2013,33(3):77-84.
8 张传庆,卢景景,陈珺,等.岩爆倾向性指标及其相互关系探讨[J].岩土力学,2017,38(5):1397-1404.
ZhangChuanqing,LuJingjing,ChenJun,et al.Discussion on rock burst proneness indexes and their relation[J].Geomechanics,2017,38(5):1397-1404.
9 杨键,王连俊.岩爆机制声发射试验研究[J].岩石力学与工程学报,2005,24(20):3796-3802.
YangJian,WangLianjun.Study on mechanism of rock burst by acoustic emission testing[J].Chinese Journal of Rock Mechanics and Engineering,2005,24(20):3796-3802.
10 CaiM,KaiserP K,MoriokaH.FLAC/PEC coupled numerical simulation of AE in large-scale underground excavations[J].International Journal of Rock Mechanics and Mining Sciences,2007,44(4):550-564.
11 陈祥,祁小博,蔡新滨,等.可拓综合评价方法在岩爆判别中的应用[J].北京交通大学学报,2009,33(1):99-108.
ChenXiang,QiXiaobo,CaiXinbin,et al.Application of extension comprehensive evaluation method in rockburst discrimination[J].Journal of Beijing Jiaotong University,2009,33(1):99-108.
12 李夕兵,姚金蕊,杜坤.高地应力硬岩矿山诱导致裂非爆连续开采初探——以开阳磷矿为例[J].岩石力学与工程学报,2013,32(6):1101-1111.
LiXibing,YaoJinrui,DuKun.Preliminary study for induced fracturing and non-explosive continuous mining in high-geostress hard rock mine:A case study of Kaiyang phosphate mine[J].Chinese Journal of Rock Mechanics and Engineering,2013,32(6):1101-1111.
13 李夕兵,宫凤强,杜坤,等.高应力岩体动力扰动下发生岩爆的试验研究进展报告[J].科技创新导报,2016(15):173.
LiXibing,GongFengqiang,DuKun,et al.Rockburst experimental study of rock mass with high stress under dynamic disturbance[J].Science and Technology Innovation Herald,2016(15):173.
14 梁昌玉,李晓,王声星,等.岩石单轴压缩应力—应变特征的率相关性及能量机制实验研究[J].岩石力学与工程学报,2012,31(9):1830-1938.
LiangChangyu,LiXiao,WangShengxing,et al.Experimental investigations on rate-dependent stress-strain characteristics and energy mechanism of rock under uniaxial compression[J].Chinese Journal of Rock Mechanics and Engineering,2012,31(9):1830-1938.
15 杨圣奇,徐卫亚,苏承东.大理岩三轴压缩变形破坏与能量特征研究[J].工程力学,2007,24(1):136-142.
YangShengqi,XuWeiya,SuChengdong.Study on the deformation failure and energy properties of marble specimen under triaxial compression[J].Engineering Mechanics,2007,24(1):136-142.
16 许江,张媛,杨红伟,等.循环孔隙水压力作用下砂岩变形损伤的能量演化规律[J].岩石力学与工程学报,2011,30(1):141-148.
XuJiang,ZhangYuan,YangHongwei,et al.Energy evolution law of deformation and damage of sandstone under cyclic pore water pressure[J].Chinese Journal of Rock Mechanics and Engineering,2011,30(1):141-148.
17 蔡美峰,王金安,王双红.玲珑金矿深部开采岩体能量分析与岩爆综合预测[J].岩石力学与工程学报,2001,20(1):38-42.
CaiMeifeng,WangJin’an,WangShuanghong.Analysis on energy distribution and prediction of rock burst during deep mining excavation in Linglong gold mine[J].Chinese Journal of Rock Mechanics and Engineering,2001,20(1):38-42.
18 李高勇.砂岩的波速与应力实时同向相关性研究[D].兰州:兰州大学,2013:16-17.
LiGaoyong.Research on Correlation Between Velocity and Stress in Sandstone in Real Time[D].Lanzhou:Lanzhou University,2013:16-17.
19 张志镇,高峰.单轴压缩下红砂岩能量演化试验研究[J].岩石力学与工程学报,2012,31(5):953-962.
ZhangZhizhen,GaoFeng.Experimental research on energy evolution of red sandstone samples under uniaxial compression[J].Chinese Journal of Rock Mechanics and Engineering,2012,31(5):953-962.
[1] 赵建平,王明虎,赵奕翰. 含水率对砂岩动态拉伸强度的影响[J]. 黄金科学技术, 2019, 27(2): 216-222.
[2] 王旷,李夕兵,马春德,顾合龙. 基于改进的RS-TOPSIS模型的岩爆倾向性预测[J]. 黄金科学技术, 2019, 27(1): 80-88.
[3] 李响,怀震,李夕兵,张倬瑶. 基于裂纹扩展模型的脆性岩石破裂特征及力学性能研究[J]. 黄金科学技术, 2019, 27(1): 41-51.
[4] 徐金国,戴兴国,闫泽正. 基于D-S证据理论—正态隶属度的岩土边坡稳定性评价[J]. 黄金科学技术, 2018, 26(6): 780-787.
[5] 荆永滨, 赵新涛, 冯兴隆. 节理岩体矿岩块度三维模拟研究[J]. 黄金科学技术, 2018, 26(3): 357-364.
[6] 卢富然, 陈建宏. 基于AHP和熵权TOPSIS模型的岩爆预测方法[J]. 黄金科学技术, 2018, 26(3): 365-371.
[7] 黄锐,曾超,闫泽正. 岩体节理面三维网络模拟方法构建与应用[J]. 黄金科学技术, 2018, 26(1): 40-48.
[8] 刘强,李夕兵,梁伟章. 岩体质量分类的PCA-RF模型及应用[J]. 黄金科学技术, 2018, 26(1): 49-55.
[9] 王进,宫凤强. 红砂岩单轴压缩试验的率效应研究[J]. 黄金科学技术, 2018, 26(1): 56-63.
[10] 曾晟,周杰,孙冰 . 典型约束条件下锚杆受瞬态激振时的位移响应衰减规律研究[J]. 黄金科学技术, 2017, 25(4): 26-32.
[11] 马凤山,郭捷,李克蓬,卢蓉,张洪训,李威. 三山岛海底金矿开采充填体与顶板岩层的变形监测研究[J]. 黄金科学技术, 2016, 24(4): 66-72.
[12] 李克蓬,马凤山,郭捷,卢蓉,张洪训,李威. 三山岛海底金矿开采充填体与围岩变形规律的数值模拟[J]. 黄金科学技术, 2016, 24(4): 73-80.
[13] 江飞飞,李向东,盛佳,张彩青. 软弱破碎岩体工程地质调查与质量评价[J]. 黄金科学技术, 2016, 24(3): 94-99.
[14] 刘科伟,曾庆田,刘栋. 边坡复杂地质结构三维可视化及数值模型构建[J]. 黄金科学技术, 2016, 24(2): 83-89.
[15] 王晓军,陈辰,卓毓龙,邓书强,冯萧. WNN模型在预测声发射信号方面的应用[J]. 黄金科学技术, 2016, 24(1): 86-91.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!