img

QQ群聊

img

官方微信

高级检索

黄金科学技术 ›› 2018, Vol. 26 ›› Issue (2): 248-253.doi: 10.11872/j.issn.1005-2518.2018.02.248

• 冶炼技术与装备研发 • 上一篇    下一篇

抛刀岭难处理金精矿细菌氧化—提金实验研究

李佳峰1,杨洪英1,佟琳琳1,金哲男1,张登超2   

  1. 1.东北大学,辽宁 沈阳 110819;
    2.鑫诚矿业有限公司,安徽 池州 247100
  • 收稿日期:2017-07-11 修回日期:2017-08-22 出版日期:2018-04-30 发布日期:2018-05-19
  • 通讯作者: 杨洪英(1960-),女,河北张家口人,教授,从事贵重金属冶炼工作。yanghy@smm.neu.edu.cn
  • 作者简介:李佳峰(1992-),男,河南商丘人,博士研究生,从事贵重金属冶炼工作。lijiafengsy@163.com
  • 基金资助:
    国家自然科学基金项目“含砷复杂金矿细菌氧化矿物界面能及其作用机制的基础研究”(编号:U1608254)、“难浸含砷金矿细菌氧化过程中[AsS]2-→As(Ⅲ)→As(Ⅴ)转化机理研究”(编号:51374066)和辽宁省自然科学基金项目“利用ASH-07浸矿菌从含铜浮选尾矿中高效绿色回收铜的新技术研究”(编号:2014020037)联合资助

     

Experimental Study on Bacterial Oxidation-Gold Extraction of Paodaoling Refractory Gold Concentrate

LI Jiafeng 1,YANG Hongying 1,TONG Linlin 1,JIN Zhenan 1,ZHANG Dengchao 2   

  1. 1.Northeastern University,Shenyang 110819,Liaoning,China;2.Xincheng Minerals Ltd.,Co.,Chizhou 247100,Anhui,China
  • Received:2017-07-11 Revised:2017-08-22 Online:2018-04-30 Published:2018-05-19

摘要:

抛刀岭金矿是典型的含砷难处理金矿,针对其金精矿,结合矿石特性,考察了细菌氧化预处理效果。实验结果表明:对于含金 20.30 g/t、含砷3.39%、含硫29.8%及含铁4.10%的抛刀岭金精矿,直接氰化浸出金的浸出率仅为30%。矿石中的主要金属矿物为黄铁矿、毒砂和雄黄;脉石矿物有长石、方解石、石英和绢云母等,属于难浸金矿石。该金精矿经HQ0211菌氧化预处理8 d后,脱砷率达到46.25%,细菌氧化渣金含量达32.1 g/t,失重率为42.53%。细菌氧化渣在通气情况下进行氰化提金,NaCN浓度为0.1%、pH值为10.5~11,48 h后氰化结束,氰化渣质量由原来的300 g减少为290 g,渣率为96.67%,氰化渣中金含量从32.1 g/t降低至2.7 g/t,金的浸出率达到91.59%,氰化过程中NaCN消耗量为13.53 kg/t。HQ0211菌氧化预处理氰化提金效果显著,为该矿处理工艺提供了可靠数据,并为此类矿石的有效利用提供了参考。

关键词: 难浸金矿, 细菌氧化, 毒砂, 黄铁矿, 金精矿, 预处理, 氰化提金, 抛刀岭金矿

Abstract:

Paodaoling gold mine is a typical arsenic-bearing refractory gold deposit,for its gold concentrate,combined with ore properties,the effect of biooxidation pretreatment was investigated.The experiment results showed that this kind of gold ore contains 20.30 g/t gold,3.39% arsenic,29.8% sulfur and 4.10% iron,and a 30% leaching rate of the gold concentrate can be obtained by direct cyanidation.The main metallic minerals in the gold ore are pyrite,arsenopyrite and realgar.The gangue minerals include feldspar,calcite,quartz,sericite and so on,and it belongs to the refractory gold ore.After 8 days of biooxidation process by HQ0211 bactreium,the arsenic removal rate was 46.25%.The oxidation residue contains 32.1 g/t gold and the weightloss rate was 42.53%.The gold cyanidation process of oxidation residue was conducted under ventilation conditions.The sodium cyanide was 0.1% and pH was 10.5~11.After cyaniding for 48 hours,the weight of gold ore was reduced from 300 g to 290 g,and the residue yield was 96.67%.According to the analysis results of cyanidation residue,the gold content reduced from 32.1 g/t to 2.7 g/t and the gold leaching rate was 91.59%,which was greatly improved.The consumption of sodium cyanide in cyanidation process was 13.53 kg/t.The gold cyanidation effect of Paodaoling gold mine was remarkable after pretreatment by HQ0211 bacterium,it provide reliable data for treatment process of this gold ore and provide reference for effective utilization of this kind of mineral.

Key words: refractory gold ore, bacterial oxidation, arsenopyrite, pyrite, gold concentrate, pre-treatment, gold extraction by cyanidation, Paodaoling
参考文献(References):

中图分类号: 

  • TF18


[1] 刘舒飞,李亮.中国黄金产业现状及对策建议[J].资源与产业,2016,18(4):98-102.
 Liu Shufei,Li Liang.Situation and suggestions for China’s gold resource industry[J].Resources and industries,2016,18(4):98-102.
[2] 张朝辉,薛伟伟,余延涛.某含砷含碳微细粒嵌布难处理金矿石选矿试验[J].湖南有色金属,2016,32(4):21-24.
 Zhang Chaohui,Xue Weiwei,Yu Yantao.Mineral processing investigation of the arsenic and carbon bearing micro-fine particle gold primary grain[J].Hunan Nonferrous Metals,2016,32(4):21-24.
[3] 陈芳芳,张亦飞,薛光.黄金冶炼生产工艺现状及发展[J].中国有色冶金,2011,40(1):11-18.
 Chen Fangfang,Zhang Yifei,Xue Guang.Status and development of production technology of gold smelting[J].China Nonferrous Metallurgy,2011,40(1):11-18.
[4] 杨洪英,杨立,赵玉山,等.难处理金矿石中硫化物细菌氧化的活性序列[J].有色金属,2002,54(2):42-44.
 Yang Hongying,Yang Li,Zhao Yushan,et al.Active alignment of sulphide minerals biooxidized by thiobacillus ferrooxidans[J].Nonferrous Metals,2002,54(2):42-44.
[5] 王帅,李超,李宏煦.难浸金矿预处理技术及其研究进展[J].黄金科学技术,2014,22(4):129-134.
 Wang Shuai,Li Chao,Li Hongxu.Research progress of pretreatment technologies of refractory gold ores[J].Gold Science and Technology,2014,22(4):129-134.
[6] 杨洪英,范金,崔日成,等.难处理高砷金矿的细菌氧化—提金研究[J].贵金属,2009,30(3):1-3.
 Yang Hongying,Fan Jin,Cui Richeng,et al.Study on bacterial oxidation-extraction gold of refractory gold ore[J].Precious Metal,2009,30(3):1-3.
[7] Morin D,Lips A,Pinches T,et al.BioMinE-Integrated project for the development of biotechnology for metal-bearing materials in Europe[J].Hydrometallurgy,2006,83(1/2/3/4):69-76.
[8] Demergasso C S,Galleguillos P A,Escudero L V,et al.Molecular characterization of microbial populations in a low-grade copper ore bioleaching test heap[J].Hydrometallurgy,2005,80(4):241-253.
[9] 李宏煦,王淀佐.生物冶金中的微生物及其作用[J].有色金属,2003,55(2):58-63.
 Li Hongxu,Wang Dianzuo.Review of investigation on microorganism behaviours in ore bio-leaching[J].Nonferrous Metals,2003,55(2):58-63.
[10] Bulaev A, Kanayeva Z K,Muravyov M I,et al.Column bioleaching of refractory gold ores[J].Advanced Materials Research,2015,1130:459-462.
[11] 黄怀国,张卿,林鸿汉.难选冶金矿提取工艺工业应用现状[J].黄金科学技术,2013,21(1):71-77.
 Huang Huaiguo,Zhang Qing,Lin Honghan.Research and application status of extraction technology for the refractory gold ore[J].Gold Science and Technology,2013,21(1):71-77.
[12] Nestor D,Valdivia U,Chaves A P.Mechanisms of bioleaching of a refractory mineral of gold with Thiobacillus ferrooxidans[J].International Journal of Mineral Processing,2001,62(1):187-198.
[13] Cui R C,Yang H Y,Zhang G P,et al.Biooxidation of high arsenic gold concentrate with arsenopyrite type[J].Journal of Chemical Industry and Engineering,2008,59(12):3090-3094.
[14] 杨少华,杨凤丽,余新阳.难处理金矿石的细菌氧化机理及影响因素[J].湿法冶金,2006,25(2):57-60.
 Yang Shaohua,Yang Fengli,Yu Xinyang.Fundamental and influence factors on bacterial oxidation of the refractory gold ores[J].Hydrometallurgy,2006,25(2):57-60.
[15] Liu Q,Yang H Y,Tong L L,et al.Fungal degradation of elemental carbon in Carbonaceous gold ore[J].Hydrometallurgy,2016,160(2):90-97.
[16] 佟琳琳,姜茂发,杨洪英,等.湖南某高砷难处理金精矿的细菌氧化—氰化提金实验研究[J].贵金属,2008,29(1):15-18.
 Tong Linlin,Jiang Maofa,Yang Hongying,et al.Study on biooxidation-gold extraction by cyanidation experiment of a high arsenic refractory gold ore in Hunan Province[J].Precious Metal,2008,29(1):15-18.
[17] Fomchenko N V,Muravyov M I,Kondrat’eva T F.Two-stage bacterial-chemical oxidation of refractory gold-bearing sulfidic concentrates[J].Hydrometallurgy,2010,101(1):28-34.
[18] 段东平,周娥,陈思明,等.高砷硫金精矿提金研究[J].有色金属(冶炼部分),2012(1):39-41.
 Duan Dongping,Zhou E,Chen Siming,et al.Investigation on gold recovery from high arsenic sulfur bearing gold concentrate[J].Nonferrous Metals (Extractive Metallurgy),2012(1):39-41.
[19] 谢建宏,贾学国,张晓民.黄金选冶[M].北京:冶金工业出版社,2014.
 Xie Jianhong,Jia Xueguo,Zhang Xiaomin.Extractive Metallurgy of Gold[M].Beijing:Metallurgical Industry Press,2014.
[20] 富瑶,王琦,杨宇,等.毒砂和含砷金精矿对某浸矿细菌胞外多糖含量的影响[J].现代矿业,2016(12):47-50,55.
 Fu Yao,Wang Qi,Yang Yu,et al.Influence of arsenopyrite and arsenic-bearing gold mineral on variation of polysaccharide in extracellular polymers of leaching bacteria stress[J].Modern Mining,2016(12):47-50,55.
[21] 杨洪英,李雪娇,佟琳琳,等.高铅铜阳极泥的工艺矿物学[J].中国有色金属学报,2014,34(1):269-278.
 Yang Hongying,Li Xuejiao,Tong Linlin,et al.Process mineralogy of high lead copper anode slime[J].The Chinese Journal of Nonferrous Metals,2014,34(1):269-278.
[22] Márquez M,Gaspar J,Bessler K E,et al.Process mineralogy of bacterial oxidized gold ore in São Bento Mine(Brasil)[J].Hydrometallurgy,2006,83(1/2/3/4):114-123.
[23] Aazami M,Lapidus G T,Azadeh A.The effect of solution parameters on the thiosulfate leaching of Zarshouran refractory gold ore[J].International Journal of Mineral Processing,2014,131:43-50.
[24] Vardanyan N S,Nagdalyan S Z.Periodic bioleaching of refractory gold-bearing pyrite ore[J].Prikladnaia Biokhimiia I Mikrobiologiia,2009,45(4):446-451.
[25] Sharma V K,Sohn M.Aquatic arsenic:Toxicity,speciation,transformations,and remediation[J].Environment International,2009,35(4):743-759.
[26] Kaksonen A H,Mudunuru B M,Hackl R.The role of microorganisms in gold processing and recovery——A review[J].Hydrometallurgy,2014,142(2):70-83.
[27] 王中溪,黄怀国,熊明,等.某含铜金矿石氨氰柱浸提金试验[J].黄金科学技术,2013,21(2):90-93.
 Wang Zhongxi,Huang Huaiguo,Xiong Ming,et al.Ammonia-cyanide column leaching of a copper bearing gold ore[J].Gold Science and Technology,2013,21(2):90-93.

[1] 陈亚静,杨洪英*,佟琳琳,金哲男. 含砷矿石细菌氧化液除砷实验及砷钙渣稳定性研究[J]. 黄金科学技术, 2018, 26(1): 124-129.
[2] 李超,张祉倩,李宏煦. 难浸金精矿生物浸出体系的电位-pH图分析[J]. 黄金科学技术, 2014, 22(2): 77-82.
[3] 黄爱华. 提金含氰废水处理工艺研究现状及发展趋势分析[J]. 黄金科学技术, 2014, 22(2): 83-89.
[4] 胡杰华,黄丽. 难浸金矿生物堆浸工艺若干控制要点浅析[J]. 黄金科学技术, 2013, 21(1): 78-81.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] 鲍振襄. 湘中自马山—龙山—醴陵锑金矿带矿床地质特征、成矿作用及成因[J]. 黄金科学技术, 1994, 2(4): 29 -35 .
[2] 李斌, 邹海洋, 杨牧, 杜高峰, 韦继康, 王天国. 马来西亚吉兰丹州Ulu Sokor金矿地质特征及找矿方向[J]. J4, 2010, 18(4): 17 -21 .
[3] 闫杰, 覃泽礼, 谢文兵, 蔡邦永. 青海南戈滩—乌龙滩地区多金属地质特征与找矿潜力[J]. J4, 2010, 18(4): 22 -26 .
[4] 张涛, 肖小强. 北祁连宁缠河地区花岗岩地球化学特征[J]. 黄金科学技术, 2011, 19(1): 6 -10 .
[5] 张燕, 汤倩. 剪切带型金矿研究进展——以云南哀牢山金矿带为例[J]. J4, 2011, 19(1): 11 -15 .
[6] 胡琴霞, 陈凯, 陈超, 张圣潇. 广东那程银金矿床地质特征及成矿规律浅析[J]. J4, 2011, 19(1): 16 -20 .
[7] 于清军, 于清源, 路仁江, 孙建, 黄山, 刘吉兴. 浅孔留矿与中深孔爆破联合回采复杂矿体技术研究[J]. J4, 2011, 19(1): 49 -50 .
[8] 潘光明 ,胡磊 ,谷新建. 龙山金锑矿低品位老窿残矿回收技术[J]. J4, 2008, 16(1): 16 -18 .
[9] 张印飞. 陕西双王金矿床八号矿体矿化规律探讨[J]. J4, 2008, 16(1): 35 -38 .
[10] 臧恩光,衣存昌,张春晓. 黑龙江桦南砾岩金矿地质特征及找矿标志[J]. J4, 2008, 16(2): 29 -32 .