img

QQ群聊

img

官方微信

高级检索

黄金科学技术 ›› 2018, Vol. 26 ›› Issue (2): 195-202.doi: 10.11872/j.issn.1005-2518.2018.02.195

• 采选技术与矿山管理 • 上一篇    下一篇

不同受力维度下红砂岩失稳评判指标研究

林格1,宫凤强1,2*   

  1. 1.中南大学资源与安全工程学院,湖南 长沙 410083;
    2.中南大学高等研究中心,湖南 长沙 410083
  • 收稿日期:2016-09-05 修回日期:2016-12-20 出版日期:2018-04-30 发布日期:2018-05-25
  • 通讯作者: 宫凤强(1979-),男,山东潍坊人,副教授,从事岩土工程灾害预测与控制等方面的研究工作。fengqiangg@126.com
  • 作者简介:林格(1990-),男,湖北汉川人,硕士研究生,从事岩石静力学研究工作。gelin10000@csu.edu.cn
  • 基金资助:

    国家自然科学基金项目“深埋硬岩劈裂破坏的强度准则和动静载荷组合作用机理研究”(编号41472269)资助

Research on Evaluation Index of Red Sandstone Instability Under Different Stress

LIN Ge 1,GONG Fengqiang 1,2   

  1. 1.School of Resources and Safety Engineering,Central South University,Changsha 410083,Hunan,China;2.Center for Advanced Study,Central South University,Changsha 410083,Hunan,China
  • Received:2016-09-05 Revised:2016-12-20 Online:2018-04-30 Published:2018-05-25

摘要:

为了研究不同受力维度下岩石峰值应力、峰值应变与失稳的关系,分别对红砂岩进行一维、二维、三维受力条件下的单轴抗压试验、变角板剪切试验和直接剪切试验以及三轴压缩试验。试验结果显示:单轴压缩试验中,峰值应力和峰值应变变异系数分别为6.61%和9.36%;变角板剪切试验中,峰值应力和峰值应变平均变异系数分别为5.69%和19.81%;直接剪切试验中,峰值应力和峰值应变平均变异系数分别为4.32%和14.74%;三轴压缩试验中,峰值应力和峰值应变平均变异系数分别为6.03%和7.44%。上述研究表明:当红砂岩处于一维和三维受力状态时,峰值应力和峰值应变均可以作为评判红砂岩是否失稳的指标,但峰值应力比峰值应变作为评判指标的可靠性更高;当红砂岩处于二维受力状态时,只有峰值应力能作为评判红砂岩是否失稳的指标。上述研究规律不仅对评判室内试验中岩石是否失稳具有重要意义,而且对评判岩土工程中岩石是否处于安全状态提供理论依据。

关键词: 单轴抗压试验, 变角板剪切试验, 直接剪切试验, 三轴压缩试验, 峰值应力, 峰值应变, 变异系数

Abstract:

In order to study the relationship between peak stress,peak strain and the stability state of red sandstone under different stress dimensions,uniaxial compression test under one-dimensional stress,variable angle plate shear test and direct shear test under two dimensional stress,three axis compression test under three dimensional stress were carried out.The results show that:the coefficient variation of peak stress and peak strain are 6.61% and 9.36% respectively in uniaxial compression test.The average coefficient variation of peak stress and peak strain are 5.69% and 19.81% respectively in variable angle plate shear test.In the direct shear test,the average coefficient variation of peak stress and peak strain are 4.32% and 14.74% respectively.The average coefficient variation of peak stress and peak strain are 6.03% and 7.44% respectively in the three axial compression tests.Research shows:when sandstone is under the one-dimensional or three-dimensional stress state,the peak stress and peak strain can be used as indexes to judge whether the red sandstone is unstable, but the peak stress is more reliable than the peak strain as the evaluation index.When the sandstone is under the two-dimensional stress state,only the peak stress can be used as an index to judge whether the red sandstone is unstable or not.The above research rule is not only important to judge whether the rock is unstable in laboratory test,but also provides a theoretical basis for judging whether rockmass is in safety state in geotechnical engineering.

Key words: uniaxial compression test, variable angle plate shear test, direct shear test, three axis compression test, peak stress, peak strain, coefficient variation

中图分类号: 

  • TD853
 
[1] 李夕兵,姚金蕊,宫凤强.硬岩金属矿山深部开采中的动力学问题[J].中国有色金属学报,2011,21(10):2551-2563.
 Li Xibing,Yao Jinrui,Gong Fengqiang.Dynamic problems in deep exploitation of hard rock metal mines[J].The Chinese Journal of Nonferrous Metals,2011,21(10):2551-2563.
[2] 李夕兵,周健,王少锋,等.深部固体资源开采评述与探索[J].中国有色金属学报,2017,27(6):1236-1262.
 Li Xibing,Zhou Jian,Wang Shaofeng,et al.Review and practice of deep mining for solid mineral resources[J].The Chinese Journal of Nonferrous Metals,2017,27(6):1236-1262.
[3] 谢和平,高峰,鞠杨.深部岩体力学研究与探索[J].岩石力学与工程学报,2015,34(11):2161-2178.
 Xie Heping,Gao Feng,Ju Yang.Research and development of rock mechanics in deep ground engineering[J].Chinese Journal of Rock Mechanics and Engineering,2015,34(11):2161-2178.
[4] 刘绍君,胡宪铭.南非金矿深部开采中的地压管理技术[J].中国矿山工程,2013,42(6):41-45.
 Liu Shaojun,Hu Xianming.Ground control techniques of gold mines deep mining in South Africa[J].China Mine Engineering,2013,42(6):41-45.
[5] 张子健,纪洪广,张月征,等.玲珑金矿深部开采岩爆分析[J].金属矿山,2015(6):134-138.
 Zhang Zijian,Ji Hongguang,Zhang Yuezheng,et al.Analysis of rock burst in deep mining of Linglong gold mine[J].Metal Mine,2015(6):134-138.
[6] 宫凤强,陆道辉,李夕兵,等.动力扰动下预静载硬岩断裂的增韧和减韧效应[J].岩石力学与工程学报,2014,33(9):1905-1915.
 Gong Fengqiang,Lu Daohui,Li Xibing,et al.Toughness increasing or decreasing effect of hard rock fracture with pre-static loading under dynamic disturbance[J].Chinese Journal of Rock Mechanics and Engineering,2014,33(9):1905-1915.
[7] 蔡美峰,孔广亚,贾立宏.岩体工程系统失稳的能量突变判断准则及其应用[J].北京科技大学学报,1997,19(4):325-328.
 Cai Meifeng,Kong Guangya,Jia Lihong.Criterion of energy carastrophe for rock project system failure in underground engineering[J].Journal of University of Science and Technology Beijing,1997,19(4):325-328.
[8] 文兴,唐绍辉,闭理楚.多通道声发射监测系统在矿山安全开采中的应用[J].矿业研究与开发,2009,29(3):65-67.
 Wen Xing,Tang Shaohui,Bi Lichu.Application of multi-channel acoustic emission system in mining engineering[J].Mining Research and Development,2009,29(3):65-67.
[9] 尹贤刚,李庶林,唐海燕,等.岩石破坏声发射平静期及其分形特征研究[J].岩石力学与工程学报,2009,28(增2):3383-3390.
 Yin Xiangang,Li Shulin,Tang Haiyan,et al.Study on quiet period and its fractal characteristics of rock failure acoustic emission[J].Chinese Journal of Rock Mechanics and Engineering,2009,28(Supp.2):3383-3390.
[10] 张勋,熊庆国,蒋贤成.矿山安全声发射实时监测系统的设计与实现[J].金属矿山,2015(7):119-122.
 Zhang Xun,Xiong Qingguo,Jiang Xiancheng.Design and implementation of acoustic emission real-time monitoring system for the mine safety[J].Metal Mine,2015(7):119-122.
[11] 李庶林.试论微震监测技术在地下工程中的应用[J].地下空间与工程学报,2009,5(1):122-128.
 Li Shulin.Discussion on microseismic monitoring technology and its applications to underground projects[J].Chinese Journal of Underground Space and Engineering,2009,5(1):122-128.
[12] 马天辉,唐春安,唐烈先,等.基于微震监测技术的岩爆预测机制研究[J].岩石力学与工程学报,2016,35(3):470-483.
 Ma Tianhui,Tang Chun’an,Tang Liexian,et al.Mechanism of rock burst forecasting based on micro-seismic monitoring technology[J].Chinese Journal of Rock Mechanics and Engineering,2016,35(3):470-483.
[13] 邓志毅,张东胜,安里千.热探测法监测岩石应力变化的实验研究[J].中国矿业大学学报,2006,35(5):623-627.
 Deng Zhiyi,Zhang Dongsheng,An Liqian.Experimental of monitoring stress variation of rock using a thermal detection[J].Journal of China University of Mining & Technology,2006,35(5):623-627.
[14] 赵扬锋,潘一山,李国臻,等.岩石变形破裂过程中电荷感应信号的检测[J].防灾减灾工程学报,2010,30(3):252-256.
 Zhao Yangfeng,Pan Yishan,Li Guozhen,et al.Measuring of the charge-induced signal of rock during the deformation and fracture process[J].Journal of Disaster Prevention and Mitigation Engineering,2010,30(3):252-256.
[15] Nitson U.Electromagnetic emission accompanying fracture of quartz-bearing rocks[J].Geophysics Research Letters,1977,4(8):333-336.
[16] 邹凯,李雯.矿山岩爆及其监测技术综述[J].江西有色金属,1989(2):32-35.
 Zou Kai,Li Wen.Mine rock burst and its monitoring technology[J].Jiangxi Nonferrous Metals,1989(2):32-35.
[17] 杨永杰,陈绍杰.同种岩石强度离散性的实验技术研究[J].实验技术与管理,2005,22(1):51-53.
 Yang Yongjie,Chen Shaojie.Experimental study on strength dispersion of same rock[J].Experimental Technology and Management,2005,22(1):51-53.
[18] 赵文,曹平,章光.岩石力学[M].长沙:中南大学出版社,2010:22-31.
 Zhao Wen,Cao Ping,Zhang Guang.Rock Mechanics[M].Changsha:Central South University Press,2010:22-31.
[19] 中华人民共和国国土资源部.地质矿产行业标准:岩石物理力学性质试验规程 第18部分:岩石单轴抗压强度试验:DZ/T0276.18-2015[S].北京:中国标准出版社,2015.
 People’s Republic of China Ministry of Land and Resources.Geological and mineral industry standard: Testing regulations for physical and mechanical properties of rocks Eighteenth part:Uniaxial compressive strength test of rock DZ/T0276.18-2015[S].Beijing:China Standard Press,2015.
[20] 中华人民共和国国土资源部.地质矿产行业标准:岩石物理力学性质试验规程(第25部分):岩石抗剪强度试验:DZ/T0276.25-2015[S].北京:中国标准出版社,2015.
 People’s Republic of China Ministry of Land and Resources.Geological and mineral industry standard:Testing regulations for physical and mechanical properties of rocks The twenty-fifth part:Shear strength test of rock:DZ/T0276.25-2015[S].Beijing:China Standard Press,2015.
[21] 李庆辉,陈勉,金衍,等.含气页岩破坏模式及力学特性的试验研究[J].岩石力学与工程学报,2012,31(增2):3763-3771.
 Li Qinghui,Chen Mian,Jin Yan,et al.Experimental research on failure modes and mechanical behaviors of gas-bearing shear[J].Chinese Journal of Rock Mechanics and Engineering,2012,31(Supp.2):3763-3771.
[22] 刘建锋,谢和平,徐进,等.循环荷载下岩石变形参数和阻尼参数探讨[J].岩石力学与工程学报,2012,31(4):770-777.
 Liu Jianfeng,Xie Heping,Xu Jin,et al.Discussion on deformation and damping parameters of rock under cyclic loading[J].Chinese Journal of Rock Mechanics and Engineering,2012,31(4):770-777.
[23] 崔洁,江权,冯夏庭,等.岩石抗剪强度参数的理论概率分布形态研究[J].岩土力学,2015,36(5):1261-1274.
 Cui Jie,Jiang Quan,Feng Xiating,et al.Theoretical probability distribution of shear strength parameters for rock[J].Rock and Soil Mechanics,2015,36(5):1261-1274.
[1] 史采星, 郭利杰, 李文臣, 张丹. 铅锌冶炼渣充填胶凝材料研究及应用[J]. 黄金科学技术, 2018, 26(2): 160-169.
[2] 刘定一, 王李管, 陈鑫, 钟德云, 徐志强. 地下矿中长期计划多目标优化及应用研究[J]. 黄金科学技术, 2018, 26(2): 228-233.
[3] 曹世荣,韩建文,李永欣,王晓军 *,冯萧,卓毓龙. 基于声发射概率密度函数固废胶结充填体损伤分析[J]. 黄金科学技术, 2017, 25(6): 92-98.
[4] 丁剑锋. 某金矿矿仓治理研究[J]. 黄金科学技术, 2017, 25(4): 52-57.
[5] 李宗楠,郭利杰*,余斌,史采星 . 基于宾汉姆体的高浓度尾砂浆剪切变稀规律研究[J]. 黄金科学技术, 2017, 25(4): 33-38.
[6] 白朝阳,王国伟,张鹏,刘拴平. 水平采空区群条件下矿柱回采爆破位置研究[J]. 黄金科学技术, 2017, 25(4): 81-86.
[7] 徐怀浩,李进友. 大尹格庄金矿磨矿系统增产降耗的应用实践[J]. 黄金科学技术, 2017, 25(3): 116-120.
[8] 王新民,荣帅,赵茂阳,张钦礼. 基于变权重理论和TOPSIS的尾砂浓密装置优选[J]. 黄金科学技术, 2017, 25(3): 77-83.
[9] 胡建华,杨春,周炳任,周科平,张绍国. 巷道压顶光面爆破裂隙扩展模拟及参数优化[J]. 黄金科学技术, 2017, 25(2): 45-53.
[10] 贾敏涛,汪群芳,吴冷峻. 深部开采热环境控制技术研究现状及展望[J]. 黄金科学技术, 2017, 25(2): 83-88.
[11] 肖伟晶,陈辰,李永欣,王晓军,曹世荣,韩建文. 分级加载条件下深部灰岩蠕变试验及模型[J]. 黄金科学技术, 2017, 25(2): 76-82.
[12] 刘志祥,龚永超,李夕兵. 基于分形理论和BP神经网络的充填料性能研究[J]. 黄金科学技术, 2017, 25(2): 38-44.
[13] 曹世荣,韩建文,肖伟晶,卓毓龙,王晓军,冯萧. 不同骨料含量胶结充填体的应力—应变关系研究[J]. 黄金科学技术, 2017, 25(1): 93-98.
[14] 赵国彦,侯俊,张小瑞,李地元,王涛. 磷石膏膏体充填体力学特性研究[J]. 黄金科学技术, 2016, 24(5): 7-12.
[15] 王新民,樊彪,张德明,李帅. 基于AHP和TOPSIS的充填方案综合评判优选[J]. 黄金科学技术, 2016, 24(5): 1-6.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] 陈懋弘, 谢贤洋, 马克忠. 贵州泥堡卡林型金矿断控型矿体的地层和岩性条件研究[J]. 黄金科学技术, 2018, 26(2): 131 -142 .
[2] 李佳峰, 杨洪英, 佟琳琳, 金哲男, 张登超. 抛刀岭难处理金精矿细菌氧化—提金实验研究[J]. 黄金科学技术, 2018, 26(2): 248 -253 .