img

QQ群聊

img

官方微信

高级检索

黄金科学技术 ›› 2020, Vol. 28 ›› Issue (2): 293-300.doi: 10.11872/j.issn.1005-2518.2020.02.165

• 采选技术与矿山管理 • 上一篇    

海拔高度对矿井巷道火灾烟气蔓延规律的影响研究

黄锐1(),吴娥1(),吴林1,2   

  1. 1.中南大学资源与安全工程学院,湖南 长沙 410083
    2.中南大学安全理论创新与促进研究中心,湖南 长沙 410083
  • 收稿日期:2019-10-05 修回日期:2020-01-17 出版日期:2020-04-30 发布日期:2020-05-07
  • 通讯作者: 吴娥 E-mail:huangrui@csu.edu.cn;wue2397588229@126.com
  • 作者简介:黄锐(1975-),男,四川邛崃人,副教授,从事工业通风技术与矿山安全评价方面的研究工作。huangrui@csu.edu.cn
  • 基金资助:
    国家“十三五”重点研发计划项目“高海拔高寒地区矿山人机功效与应急救援技术”(2018YFC0808406)

Study on the Influence of Altitude on Smoke Propagation Law in Mine Roadway Fire

Rui HUANG1(),E WU1(),Lin WU1,2   

  1. 1.School of Resources and Safety Engineering,Central South University,Changsha 410083,Hunan,China
    2.Safety and Security Theory Innovation and Promotion Center(STIPC),Central South University,Changsha 410083,Hunan,China
  • Received:2019-10-05 Revised:2020-01-17 Online:2020-04-30 Published:2020-05-07
  • Contact: E WU E-mail:huangrui@csu.edu.cn;wue2397588229@126.com

摘要:

矿井火灾已成为矿山安全生产过程中重点关注的问题之一,尤其高原地区受制于复杂的环境因素,火灾时期的抢险救灾成为难题,因此研究海拔高度对火灾烟气传播规律的影响具有重要的实践意义。采用火灾数值模拟软件FDS,对5种不同海拔高度(0,1 000,2 000,3 000,4 000 m)下矿井巷道火灾进行动态模拟,通过观察烟气扩散和动态升温过程,分析不同海拔高度下烟气扩散和温度分布规律,并对比不同海拔高度下矿井巷道内温度、烟气行为(CO浓度)和能见度等参数的变化情况,据此分析海拔高度对矿井火灾时期人员安全疏散的影响。结果表明:火灾烟气蔓延速率随着海拔高度的增加而减小,且高海拔地区减小幅度更大;随着海拔高度的增加,火灾蔓延过程中产生的顶峰温度和CO浓度值均减小,且能见度增强,对人体产生的危害也相应减小。总体来说,当海拔相对较高的矿井发生火灾时,相较于正常海拔地区,安全疏散时间延长,安全疏散距离缩短,更有利于人员逃生。

关键词: 海拔高度, 矿井火灾, 烟气流动, 温度场, CO浓度, 数值模拟

Abstract:

In the process of mine safety production,frequent mine fire accidents have caused huge casualties and economic losses,which has become one of the major concerns.The environment conditions of mines at different altitudes are completely different,which directly affects the evolution of the mine fire,and brings great challenges to the emergency rescue work during the mine fire.Therefore,it is of great practical significance to study the effect of altitude on the law of smoke spread during the mine roadway fire period.In this paper,based on the construction of the mine fire model,the key paramaters of the fire smoke at the characteristic height of the human eye (z=1.6 m) were used as the focus,fire scenarios of the mine mechanical and electrical chamber at five groups of different altitudes from 0 m to 4 000 m(equal points) was simulated by using the Fire Dynamics Simulator(FDS).By observing the process of smoke diffusion and dynamic temperature rise in different fire scenarios,the law of smoke diffusion and temperature distribution in mine roadway at different altitudes was analyzed.At the same time,the changes of temperature,smoke behavior(CO concentration),visibility and other fire smoke characteristic parameters in the mine fire at different altitudes were compared,so as to analyze the influence of altitude on the safety evacuation of underground personnel during mine fires.The results show that:(1)With the increase of altitude,the rate of smoke spread and the influence range of smoke in the mine fire are correspondingly reduced.In the transverse diction,the effective and safe evacuation route should be far away from the fire side in the tunnel;(2)With the increase of altitude,the characteristic parameters of fire smoke also change to some extent,that is the peak temperature and CO concentration decrease,while the visibility gradually increases;(3)Compared with low-altitude areas,when the fire occurs in the mine with relatively high altitude,the safety evacuation time is prolonged and the safety evacuation distance is shortened,which makes the possibility of people’s safety escape is greater.In general,this paper reveals the mechanism of the effect of altitude on the smoke spread of mine fire,which can be used as reference for the prevention and control of mine fire accidents.

Key words: altitude, mine fire, smoke flow, temperature field, CO concentration, numerical simulation

中图分类号: 

  • TD26

表1

电缆物理参数"

参数名称参数取值
密度/(kg·m-31 380
比热容/(kJ·kg-1·K-11.289
热导率/(W·m-1·K-10.192

图1

矿井火灾模型"

表2

模型中各障碍物尺寸"

方向巷道尺寸机电硐室尺寸配电柜尺寸拓展计算域
x4426
y100414
z3.7326

表3

5种海拔高度下的初始环境参数"

海拔高度/m温度/℃压力/kPaO2质量分数/(kg·kg-1
020101.3250.2312
1 0002089.8740.2152
2 0001579.4940.1978
3 00010.570.1070.1807
4 000761.6390.1629

图2

不同海拔高度下温度纵向分布"

图3

不同海拔高度下烟气时空演化情况对比"

图4

CO浓度随时间变化曲线注:“-”表示监测点位于火源上风侧,例如“-18 m”和“18 m”分别表示位于火源上、下风侧18 m的监测点"

图5

不同海拔高度下能见度对比"

1 杨彪.高寒高海拔地区矿山工程设计要点思考[J].中国钼业,2018,42(3):11-16.
Yang Biao.Key design considerations for the mine engineering in the alpine and high-altitude regions[J].China Molybdenum Industry,2018,42(3):11-16.
2 张念,谭忠盛,毛军,等.高海拔铁路隧道火灾燃烧特性试验研究[J].中国安全科学学报,2011,21(12):52-57.
Zhang Nian,Tan Zhongsheng,Mao Jun,et al.Experimental study on combustion characteristics of fire in high-altitude railway tunnels[J].China Safety Science Journal,2011,21(12):52-57.
3 洪洋,周科平,梁志鹏,等.基于VR技术的非煤矿山火灾应急培训系统的开发[J].黄金科学技术,2019,27(4):629-636.
Hong Yang,Zhou Keping,Liang Zhipeng,et al.Development of non-coal mine fire contingency training system based on VR technology[J].Gold Science and Technology,2019,27(4):629-636.
4 徐乐奕.辽宁连山钼业集团兴利矿业有限公司“12·17”重大火灾事故[J].现代班组,2018(11):29.
Xu Leyi.“12·17” major fire accident in Liaoning Lianshan Molybdenum Group Xingli Mining Co.,Ltd.[J].Modern Group,2018(11):29.
5 Zarzecki M,Quintiere J G,Lyon R E,et al.The effect of pressure and oxygen concentration on the combustion of PMMA[J].Combustion and Flame,2013,160(8):1519-1530.
6 Mcallister S,Fernandez-Pello C,Urban D,et al.The combined effect of pressure and oxygen concentration on piloted ignition of a solid combustible[J].Combustion and Flame,2010,157(9):1753-1759.
7 Li Z H,He Y P,Zhang H,et al.Combustion characteristics of n-heptane and wood crib fires at different altitudes[J].Proceedings of the Combustion Institute,2009,32(2):2481-2488.
8 于春雨,张永明,方俊,等.西藏高原环境下点式感烟火灾探测器的灵敏度[J].中国科学技术大学学报,2007,37(3):290-295.
Yu Chunyu,Zhang Yongming,Fang Jun,et al.Sensitivity of point-type smoke fire detectors in plateau environment of Tibet[J].Journal of University of Science and Tech-nology of China,2007,37(3):290-295.
9 Zhang Y,Ji J,Li J,et al.Effects of altitude and sample width on the characteristics of horizontal flame spread over wood sheets[J].Fire Safety Journal,2012,51:120-125.
10 Joo H I,Gülder Ö L.Soot formation and temperature field structure in co-flow laminar methane-air diffusion flames at pressures from 10 to 60 atm[J].Proceedings of the Combustion Institute,2009,32(1):769-775.
11 Ji J,Guo F Y,Gao Z H,et al.Numerical investigation on the effect of ambient pressure on smoke movement and temperature distribution in tunnel fires[J].Applied Thermal Engineering,2017,118:663-669.
12 Ji J,Guo F Y,Gao Z H,et al.Effects of ambient pressure on transport characteristics of thermal-driven smoke flow in a tunnel[J].International Journal of Thermal Scien-ces,2018,125:210-217.
13 Wang J,Pan Y Y,Lu S,et al.CO concentration decay profile and ceiling jet entrainment in aircraft cargo compartment fires at reduced pressures[J].Applied Thermal En-gineering,2017,110(5):772-778.
14 Yan Z G,Guo Q H,Zhu H H.Full-scale experiments on fire characteristics of road tunnel at high altitude[J].Tunnelling and Underground Space Technology,2017,66:134-146.
15 张念,谭忠盛.高海拔特长铁路隧道火灾烟气分布特性数值模拟研究[J].中国安全科学学报,2013,23(6):52-57.
Zhang Nian,Tan Zhongsheng.Numerical simulation study on smoke distribution of fire in high-altitude super-long railway tunnels[J].China Safety Science Journal,2013,23(6):52-57.
16 袁建平,方正,黄海峰,等.水平隧道火灾通风纵向临界风速模型[J].土木建筑与环境工程,2009,31(6):66-70.
Yuan Jianping,Fang Zheng,Huang Haifeng,et al.Model of critical velocity for fire ventilation in horizontal tunnels[J].Journal of Civil and Environmental Engineering,2009,31(6):66-70.
17 McGrattan K B,Baum H R,Rehm R G,et al.Fire Dynamics Simulator (Version 2),Technical Reference Guide[M].Maryland:National Institute of Standards and Technology,2001.
18 He Y P,Jamieson C,Jeary A,et al.Effect of computation domain on simulation of small compartment fires[J].Fire Safety Science,2017,9(9):1365-1376.
19 苟红松,李永生,罗占夫.高海拔地区隧道施工通风风量计算及风机选型研究[J].隧道建设,2012,32(1):53-56.
Gou Hongsong,Li Yongsheng,Luo Zhanfu.Study on air volume calculation and fan selection for tunneling ventilation in plateau area[J].Tunnel Construction,2012,32(1):53-56.
20 何磊.高原矿山独头巷道增氧通风数值模拟研究[J].现代矿业,2011,27(2):37-40.
He Lei.Study on oxygen enhancing ventilation in blind drift at plateau mine by numerical simulation[J].Modern Mining,2011,27(2):37-40.
21 王光福.高原寒区对工程机械性能的技术研究与应用[J].甘肃科技,2009,25(10):44-45,71.
Wang Guangfu.Technical research and application of engineering machinery performance in plateau cold region[J].Gansu Science and Technology,2009,25(10):44-45,71.
22 于润沧.采矿工程师手册(下)[M].北京:冶金工业出版社,2009:1879-1890.
Yu Runcang.Mining Engineer’s Handbook(Volume Ⅱ)[M].Beijing:Metallurgical Industry Press,2009:1879-1890.
23 Tan X J,Chen W Z,Yang D S,et al.Study on the influence of airflow on the temperature of the surrounding rock in a cold region tunnel and its application to insulation layer design[J].Applied Thermal Engineering,2014,67(1/2):320-334.
24 Ji J,Wan H X,Li Y F,et al.Influence of relative location of two openings on fire and smoke behaviors in stairwell with a compartment[J].International Journal of Thermal Sciences,2015,89:23-33.
25 王晓波.长大隧道火灾安全疏散研究[J].地下空间与工程学报,2016,12(5):1364-1370.
Wang Xiaobo.Research on safe evacuation in large and long tunnel during fire[J].Chinese Journal of Underground Space and Engineering,2016,12(5):1364-1370.
[1] 张钦礼,蒋超余,高翔,刘斌. 大断面六角形进路采矿法结构参数优化研究[J]. 黄金科学技术, 2020, 28(1): 42-50.
[2] 田龙,周智勇,陈建宏. 配备辅助通风的高温矿井采掘区温度分布数值模拟[J]. 黄金科学技术, 2020, 28(1): 61-69.
[3] 高远,陈庆发,蒋腾龙. 大新锰矿复杂空区群三维数值模型构建方法及胶结充填治理研究[J]. 黄金科学技术, 2019, 27(6): 851-861.
[4] 谢也真,曹平,陈昊然. 滥泥坪铜矿三维地应力测量及巷道布置优化研究[J]. 黄金科学技术, 2019, 27(6): 862-870.
[5] 田军, 刘建坡, 杨勇, 张长银. 进路充填法爆破扰动诱发充填体破坏规律研究[J]. 黄金科学技术, 2019, 27(5): 687-695.
[6] 宋恩祥, 李强, 张静, 彭康. 蚀变带内矿体开采中人工假底的应用研究[J]. 黄金科学技术, 2019, 27(5): 722-730.
[7] 杨仕教,王志会. 上覆公路浅埋采空区群稳定性数值模拟[J]. 黄金科学技术, 2019, 27(4): 505-512.
[8] 洪洋,周科平,梁志鹏,胡业民. 基于VR技术的非煤矿山火灾应急培训系统的开发[J]. 黄金科学技术, 2019, 27(4): 629-636.
[9] 梁瑞,俞瑞利,周文海,黄小彬,王建勇,熊征宇. 空气间隔装药爆破模型在矿房回采中的应用[J]. 黄金科学技术, 2019, 27(3): 358-367.
[10] 秦世康,陈庆发,尹庭昌. 岩石与岩体冻融损伤内涵区别及研究进展[J]. 黄金科学技术, 2019, 27(3): 385-397.
[11] 刘锋,王昭坤,马凤山,王波,王剑波,董春蕾. 矿山深部卸压技术研究现状及展望[J]. 黄金科学技术, 2019, 27(3): 425-432.
[12] 方传峰,王晋淼,李剡兵,贾明涛. 基于PFC2D-DFN的自然崩落法数值模拟研究[J]. 黄金科学技术, 2019, 27(2): 189-198.
[13] 王春,王成,熊祖强,程露萍,王怀彬. 动力扰动下深部出矿巷道围岩的变形特征[J]. 黄金科学技术, 2019, 27(2): 232-240.
[14] 吕闹,汪海波. 厚硬顶板弱化前后垮落致灾数值模拟研究[J]. 黄金科学技术, 2019, 27(2): 257-264.
[15] 王从陆,李童. 基于Ventsim的深井线性热源对有效通风量的影响分析[J]. 黄金科学技术, 2019, 27(2): 271-277.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!