img

QQ群聊

img

官方微信

高级检索

黄金科学技术 ›› 2020, Vol. 28 ›› Issue (1): 42-50.doi: 10.11872/j.issn.1005-2518.2020.01.103

• 采选技术与矿山管理 • 上一篇    下一篇

大断面六角形进路采矿法结构参数优化研究

张钦礼1(),蒋超余1(),高翔1,刘斌2   

  1. 1.中南大学资源与安全工程学院,湖南 长沙 410083
    2.金川集团股份有限公司,甘肃 金昌 737100
  • 收稿日期:2019-06-28 修回日期:2019-09-26 出版日期:2020-02-29 发布日期:2020-02-26
  • 通讯作者: 蒋超余 E-mail:zhangqinlicn@126.com;13278883353@163.com
  • 作者简介:张钦礼(1965-),男,山东潍坊人,教授,从事充填采矿工程和安全工程研究工作。zhangqinlicn@126.com
  • 基金资助:
    “十三五”国家重点研发计划项目“大型高尾矿库溃坝灾害防控关键技术研究及应用示范”(2017YFC0804605)

Study on Optimization of Structural Parameters of Hexagonal Mining Method with Large Cross-section

Qinli ZHANG1(),Chaoyu JIANG1(),Xiang GAO1,Bin LIU2   

  1. 1.School of Resources and Safety Engineering,Central South University,Changsha 410083,Hunan,China
    2.Jinchuan Group Co. , Ltd. ,Jinchang 737100,Gansu,China
  • Received:2019-06-28 Revised:2019-09-26 Online:2020-02-29 Published:2020-02-26
  • Contact: Chaoyu JIANG E-mail:zhangqinlicn@126.com;13278883353@163.com

摘要:

针对龙首矿普通六角形进路采矿法在西一贫矿区回采过程中进尺率低、断面轮廓不规整、机械化程度低和炸药单耗高等回采问题,通过数值模拟和现场试验,对大断面六角形进路采矿法在龙首矿西一贫矿开采区的可行性进行研究。结果表明:与普通六角形进路采矿法相比,采用大断面六角形进路采矿法回采西一贫矿资源时,采场顶底板及边帮矿岩受力条件更好,顶底板变形量小,2条相邻进路之间未出现贯通;平均进尺由2.4 m提高至3.2 m,提高了33.3%;炸药单耗由0.20 kg/t降低至0.15 kg/t,降低了25%;轮廓完整性更好,最大超挖量降低了97 cm,最大欠挖量降低了10 cm;凿岩效率由1.25 m/min提高至2.10 m/min。研究结果证明了大断面六角形进路采矿法在龙首矿西一贫矿开采区回采过程中的可行性,符合回采过程中对安全性和高效的要求。

关键词: 大断面, 六角形进路, 数值模拟, 结构参数, 爆破参数

Abstract:

The reasonable selection of stope structural parameters is a key process in mining design,which has an important influence on stope stability,blasting drilling depth,explosive consumption,mining efficiency and stress state of surrounding rock.Reasonable stope structural parameters are conducive to improve the stress conditions during route mining,reduce the stress and strain values of surrounding rock around the stope, reduce the support workload and improve the mining efficiency under the condition of ensuring safe mining.Based on the lean ore resources mining in the Xiyi mining area of Longshou Mine,Jinchuan Group,we use bionic principle to design the mining route with honeycomb hexagonal structure,so as to improve the surrounding rock stress conditions,improve the stope stability and effectively control the crustalstress.Xiyi mining area is located between 17 and 34 rows in the west mining area of Longshou Mine,Jinchuan Group,and between level of 1 220 m and 1 520 m.Adopt the general hexagonal section mining method for mining,with the section specification of 4 m*6 m*5 m (top and bottom width * waist width* height) practice has proved that,the adaptability of the section specification and borehole layout to the broken ore body in Xiyi lean mine is poor.Aiming at the problems of low drilling depth rate,irregular cross-section outline,low mechanization degree and high explosive consumption in the process of general hexagonal approach mining in Xiyi lean mining area of Longshou Mine,this study adopted empirical analogy method and proposed a hexagonal approach mining method with large cross-section size of 4 m*8 m*8 m (top and bottom width*waist width*height).Based on FLAC3D software,the excavation and filling process of the test roadway were simulated numerically and analyzed.The maximum principal stress appears in the top plate of the route,the minimum principal stress lies in the bottom plate and the lower side of the route,and the stress concentration phenomenon appears in the upper part between the two access roads.And then field tests were carried out according to the designed mining technology to study the feasibility of the large cross-section hexagonal roadway mining method in the Xiyi lean mining area of Longshou Mine.Research indicates:Comparing ordinary hexagonal mining method,when the large cross-section hexagonal approach is adopted to mine the resources of Xiyi lean ore mining area,the stope roof and floor,and side rock are under better stress conditions,the roof and floor deformation is small,and there is no connection between the two approaches. In the lower inverted trapezoid mining,the step blasting driving method is adopted,which increases the free surface in the vertical direction and reduces the rock clamping effect during blasting.The average footage increased from 2.4 m to 3.2 m,increase by 33.3%.The explosive unit consumption is reduced from 0.2 kg/t to 0.15 kg/t,and the explosive consumption is reduced by 25%.Due to the reasonable arrangement of blastholes and the design of initiation sequence,the explosive energy is released in turn during blasting,and the damage of blasting vibration to the side wall and bottom plate is less.This improves contour integrity,maximum over-excavation reduced by 97 cm,maximum under-excavation reduced by 10 cm.At the same time,it is also conducive to the formation of the next layered hexagonal route. Due to the large working space of large section hexagonal drift mining method,Boomer double arm drilling jumbo is designed to drill,which greatly improves the drilling efficiency and safety.And rock drilling efficiency increased from 1.25 m/min to 2.10 m/min. It proves the feasibility of the large-section hexagonal approach in the mining process of the Xiyi lean mining area of Longshou Mine,and realize the requirements for safety and efficiency in the mining process.

Key words: large section, hexagonal approach, numerical simulation, structural parameters, blasting parameters

中图分类号: 

  • TD862

图1

1 448 m分段20行和22行第二分层回采图"

图2

大断面六角形进路采矿法示意图"

图3

爆破设计及段次图"

表1

相关矿岩基本力学参数"

矿岩类别弹性模量/GPa抗拉强度/MPa泊松比容重γ/(kN·m-3黏结力/MPa内摩擦角/(°)
矿体62.02.000.2229.90.5640.0
围岩60.01.960.2427.50.5339.0
充填体6.80.850.1517.20.5538.0

图4

模拟模型及回采进路编号(a)物理模型;(b)进路编号"

图5

模拟过程云图(a)最大主应力云图;(b)最小主应力云图;(c)纵向位移云图;(d)塑性破坏区云图"

表2

2种采矿方案各循环进尺数据"

采矿方案各循环进尺平均进尺
123456789101112
大断面正梯形2.5232332222332.5
大断面倒梯形3.54544.553.544---4.2
普通断面22.12.22.42.82.42.12.62.52.32.42.62.4

图6

测点示意图"

图7

测量结果与设计断面误差图(a)普通进路断面规格误差图;(b)大断面进路断面规格误差图"

图8

进路断面现场图(a)普通进路断面现场图;(b)大断面进路断面现场图"

表3

各循环平均凿岩效率记录"

采矿方案各循环凿岩效率平均
123456789101112
大断面正梯形1.61.92.01.92.31.82.32.42.12.01.92.02.02
大断面倒梯形1.92.52.32.02.42.52.32.42.4---2.29
普通断面1.11.21.21.51.41.21.31.01.11.01.41.61.25

图9

进路凿岩现场图(a)普通进路凿岩现场图;(b)大断面进路凿岩现场图"

表4

各循环平均炸药单耗记录"

采矿方案各循环炸药单耗平均
123456789101112
大断面正梯形0.240.240.230.250.210.190.210.250.110.240.150.150.19
大断面倒梯形0.090.090.080.060.110.110.060.070.08---0.08
普通断面0.190.220.210.210.290.160.210.260.180.270.230.210.20
1 程健,张钦礼,薛希龙,等.基于AHP和TOPSIS法的采场结构参数优化研究[J].矿冶工程,2014,34(1):1-5.
Cheng Jian,Zhang Qinli,Xue Xilong,et al.Optimization of stope structure parameters based on AHP and TOPSIS method[J].Mining and Metallurgical Engineering,2014,34(1):1-5.
2 孙辉,王在泉,张黎明.六边形进路开采稳定性影响因素分析[J].矿业研究与开发,2015,35(12):13-16.
Sun Hui,Wang Zaiquan,Zhang Liming. Analysis of influence factors on stability under hexagonal stope mining[J]. Mining Research and Development,2015,35(12):13-16.
3 方传峰,王晋淼,李剡兵.基于PFC2D-DFN的自然崩落法数值模拟研究[J].黄金科学技术,2019,27(2):189-198.
Fang Chuanfeng,Wang Jinmiao,Li Shanbing. Numerical simulation research of natural caving method based on PFC2D-DFN[J].Gold Science and Technology,2019,27(2):189-198.
4 刘新强.莱新铁矿六边形采场结构的可行性分析[J].辽宁工程技术大学学报(自然科学版),2010,29(1):28-31.
Liu Xinqiang. Analysis on stability of hexagonal mining room in Laixin ore mine[J].Journal of Liaoning Technical University(Natural Science),2010,29(1):28-31.
5 严体.龙首矿下向进路式充填法采场结构参数研究[D].昆明:昆明理工大学,2006.
Yan Ti.Study on Stope Structural Parameters of Downward Entry Filling Method in Longshou Mine[D].Kunming:Kunming University of Science and Technology,2006.
6 乔登攀,严体,陈俊智.龙首矿下向分层充填采矿法六角形进路规格优化[J].云南冶金,2007(1):10-14,27.
Qiao Dengpan,Yan Ti,Chen Junzhi.Stope construction parameters optimization of underhand cutting and filling method in hexagon stope in Longshou mine[J].Yunnan Metallurgy,2007(1):10-14,27.
7 程海勇,乔登攀.金川龙首矿充填采矿与地表沉降规律探讨[J].金属矿山,2012,41(11):32-35.
Cheng Haiyong,Qiao Dengpan.Discussion on filling mining of Longshou mine in Jinchuan and the laws of surface subsidence[J]. Metal Mine,2012,41(11):32-35.
8 韩冰. 提高龙首矿下向六角形进路式采矿爆破效率研究[D]. 昆明:昆明理工大学,2010.
Han Bing.Test and Study on Increasing the Blasting Effiency of Underhand Cutting and Filling Method in Hexagon Stope in Longshou Mine[D].Kunming:Kunming University of Science and Technology,2010.
9 王永定.六角形采矿方法进路断面参数优化[C]//中国矿业科技文汇.北京:冶金工业出版社,2014:160-161.
Wang Yongding.Parameter optimization of hexagonal mining approach section [C]//China Mining Science and Technology Collection.Beijing:Metallurgical Industry Press,2014:160-161.
10 李国平.下沟矿二次动压巷道高预应力支护技术研究[D].西安:西安科技大学,2015.
Li Guoping.Research on Two Dynamic Pressure Roadway High Prestrssed Supporting Technology of Xiagou Mine[D]. Xi’an :Xi’an University of Science and Technology,2015.
11 邬金,李元辉,司呈斌,等.深埋厚大矿体采场结构参数优化[J].金属矿山,2014,32(11):11-15.
Wu Jin,Li Yuanhui,Si Chengbin,et al.Optimization of structure parameters in deep & large-sized orebody[J]. Metal Mine,2014,32(11):11-15.
12 周科平,朱和玲,高峰.采矿环境再造地下人工结构稳定性综合方法研究与应用[J].岩石力学与工程学报,2012,31(7):1429-1436.
Zhou Keping,Zhu Heling,Gao Feng. Research on stability of reconstructed underground artificial structure in mining environment by comprehensive method and application[J].Chinese Journal of Rock Mechanics and Engineering,2012,31(7):1429-1436.
13 朱青凌,尚振华.基于有限差分的某铁矿采场稳定性研究[J].矿业研究与开发,2018,38(11):35-39.
Zhu Qingling,Shang Zhenhua.Study on stope stability of an iron mine based on finite difference program[J]. Mining Research and Development,2018,38(11):35-39.
14 田敏,胡崴.基于FLAC3D的某铁矿采场结构参数优选[J].现代矿业,2018,34(2):69-70,73.
Tian Min,Hu Wei.Optimum selection of stope structural parameters of an iron mine based on FLAC3D[J].Modern Mining,2018,34(2):69-70,73.
15 缪国卫,程文文,刘冬生,等.基于FLAC3D的井下采场结构参数优化研究[J].黄金,2015,36(3):29-36.
Miao Guowei,Cheng Wenwen,Liu Dongsheng,et al. Research on the optimization of underground structure parameters by FLAC3D[J]. Gold,2015,36(3):29-36.
16 黄鹏.煤岩蠕变损伤机理及工作面临空区段煤柱稳定性研究[D].徐州:中国矿业大学,2018.
Huang Peng.Study on the Creep Damage Mechanism of Coal Petrography and Gob-side Coal Pillar Stability[D]. Xuzhou:China University of Mining and Technology,2018.
17 王磊.固体密实充填开采岩层移动机理及变形预测研究[D].徐州:中国矿业大学,2012.
Wang Lei.Study on Strata Movement Mechanism and Deformation Prediction of Coal Mining with Solid Waste Compacted Filling[D].Xuzhou:China University of Mining and Technology,2012.
18 刘宝琛,颜荣贵.破裂岩石力学模型探讨[J].岩土工程学报,1981,3(4):81-92.
Liu Baochen,Yan Ronggui.Mechanical models of fractured rock[J]. Chinese Journal of Geotechnical Engineering,1981,3(4):81-92.
19 闫永富,杜文秀.巴润矿山特殊形状爆区爆破设计优化[J].包钢科技,2019,45(1):12-15.
Yan Yongfu,Du Wenxiu.Optimization of blasting design for special-shaped blast area of Barun mine[J]. Science and Technology of Baotou Steel,2019,45(1):12-15.
20 师百垒,戴俊,武宇,等.隧道无掏槽齐发崩落爆破应用研究[J].公路,2016,61(11):261-265.
Shi Bailei,Dai Jun,Wu Yu,et al. Research on application of non-undercutting simultaneous break blasting for tunneling[J]. Highway,2016,61(11):261-265.
[1] 田龙, 周智勇, 陈建宏. 配备辅助通风的高温矿井采掘区温度分布数值模拟[J]. 黄金科学技术, 2020, 28(1): 61-69.
[2] 高远,陈庆发,蒋腾龙. 大新锰矿复杂空区群三维数值模型构建方法及胶结充填治理研究[J]. 黄金科学技术, 2019, 27(6): 851-861.
[3] 谢也真,曹平,陈昊然. 滥泥坪铜矿三维地应力测量及巷道布置优化研究[J]. 黄金科学技术, 2019, 27(6): 862-870.
[4] 田军, 刘建坡, 杨勇, 张长银. 进路充填法爆破扰动诱发充填体破坏规律研究[J]. 黄金科学技术, 2019, 27(5): 687-695.
[5] 宋恩祥, 李强, 张静, 彭康. 蚀变带内矿体开采中人工假底的应用研究[J]. 黄金科学技术, 2019, 27(5): 722-730.
[6] 赵国彦,李振阳,代俊成. 基于Vague-RSM-AFSA模型的采场结构参数优化研究[J]. 黄金科学技术, 2019, 27(4): 497-504.
[7] 杨仕教,王志会. 上覆公路浅埋采空区群稳定性数值模拟[J]. 黄金科学技术, 2019, 27(4): 505-512.
[8] 李启月,赵新浩,魏新傲,郑静,张建秋. 大断面隧道轮廓控制爆破技术研究与应用[J]. 黄金科学技术, 2019, 27(3): 350-357.
[9] 梁瑞,俞瑞利,周文海,黄小彬,王建勇,熊征宇. 空气间隔装药爆破模型在矿房回采中的应用[J]. 黄金科学技术, 2019, 27(3): 358-367.
[10] 秦世康,陈庆发,尹庭昌. 岩石与岩体冻融损伤内涵区别及研究进展[J]. 黄金科学技术, 2019, 27(3): 385-397.
[11] 刘锋,王昭坤,马凤山,王波,王剑波,董春蕾. 矿山深部卸压技术研究现状及展望[J]. 黄金科学技术, 2019, 27(3): 425-432.
[12] 王春,王成,熊祖强,程露萍,王怀彬. 动力扰动下深部出矿巷道围岩的变形特征[J]. 黄金科学技术, 2019, 27(2): 232-240.
[13] 方传峰,王晋淼,李剡兵,贾明涛. 基于PFC2D-DFN的自然崩落法数值模拟研究[J]. 黄金科学技术, 2019, 27(2): 189-198.
[14] 吕闹,汪海波. 厚硬顶板弱化前后垮落致灾数值模拟研究[J]. 黄金科学技术, 2019, 27(2): 257-264.
[15] 王从陆,李童. 基于Ventsim的深井线性热源对有效通风量的影响分析[J]. 黄金科学技术, 2019, 27(2): 271-277.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] 闫杰, 覃泽礼, 谢文兵, 蔡邦永. 青海南戈滩—乌龙滩地区多金属地质特征与找矿潜力[J]. J4, 2010, 18(4): 22 -26 .
[2] 宋贺民, 冯喜利, 丁宪华. 太行山北段交界口矿区地质地球化学特征及找矿方向[J]. J4, 2010, 18(3): 54 -58 .
[3] 李淑芳, 于永安, 朝银银, 王美娟, 张岱, 刘君, 孙亮亮. 在辽东成矿带找寻层控型金矿床靶区[J]. J4, 2010, 18(3): 59 -62 .
[4] 胡琴霞, 李建忠, 喻光明, 谢艳芳, 张圣潇. 白龙江成矿带金矿点初探[J]. J4, 2010, 18(3): 51 -53 .
[5] 陈学俊. 青海直亥买休玛金矿床矿体特征与找矿前景分析[J]. J4, 2010, 18(4): 50 -53 .
[6] 杨明荣, 牟长贤. 原子荧光法测定化探样品中砷和锑的不确定度评定[J]. J4, 2010, 18(3): 68 -71 .
[7] 苏建华, 陆树林. 从高酸低浓度尾液中萃取金的试验[J]. J4, 2010, 18(3): 72 -75 .
[8] 王大平, 宋丙剑, 韦库明. 大功率激电测量在辽宁北水泉寻找隐伏矿床的应用[J]. J4, 2010, 18(3): 76 -78 .
[9] 刘胜光, 高海峰, 黄锁英. 电子手薄在山东焦家金矿地质专业中的应用[J]. J4, 2010, 18(3): 79 -82 .
[10] 黄俊,吴家富,鲁如魁 ,夏立元. 内蒙古兵图金矿成因探讨及找矿方向[J]. J4, 2010, 18(4): 1 -5 .