img

QQ群聊

img

官方微信

高级检索

黄金科学技术 ›› 2019, Vol. 27 ›› Issue (4): 589-597.doi: 10.11872/j.issn.1005-2518.2019.04.589

• 采选技术与矿山管理 • 上一篇    下一篇

高海拔环境下氧化铜矿浮选优化试验研究

刘子龙(),杨洪英(),佟琳琳,陈国宝   

  1. 东北大学冶金学院,辽宁 沈阳 110819
  • 收稿日期:2018-08-09 修回日期:2018-12-04 出版日期:2019-08-31 发布日期:2019-08-19
  • 通讯作者: 杨洪英 E-mail:longzi_2009@163.com;yanghy@smm.neu.edu.cn
  • 作者简介:刘子龙(1972-),男,辽宁凤城人,教授级高工,从事黄金、有色金属选矿技术研究工作。longzi_2009@163.com
  • 基金资助:
    国家自然科学基金项目“含砷复杂金矿细菌氧化矿物界面及其作用机制的基础研究”(U1608254);低品位难处理金矿综合利用国家重点实验室开放基金项目“低品位矿石生物堆浸模拟机优化研究”[编号:ZJKY2017(B)KFJJ01&ZJKY2017(B)

Experimental Study on Flotation Optimization of Copper Oxide Ore in High Altitude Environment

Zilong LIU(),Hongying YANG(),Linlin TONG,Guobao CHEN   

  1. School of Metallurgy,Northeastern University,Shenyang 110819,Liaoning,China
  • Received:2018-08-09 Revised:2018-12-04 Online:2019-08-31 Published:2019-08-19
  • Contact: Hongying YANG E-mail:longzi_2009@163.com;yanghy@smm.neu.edu.cn

摘要:

针对西藏某大型选矿厂在处理高海拔复杂氧化铜浮选精矿时存在品位不合格、回收率不理想的问题,对矿物开展工艺矿物学研究,基于此开展磨矿细度及浮选药剂制度优化试验。工艺矿物学研究表明:原矿铜氧化率为36.80%,其中结合氧化铜占16.59%,铜品位为0.51%,金品位为0.25×10-6,银品位为14.24×10-6,矿石中含铜量较高的次生铜矿物砷黝铜矿多与黄铁矿连生或共生,影响到铜精矿的质量和铜的回收率;矿石中含有一定的白云母、长石、石膏和方解石等,在磨矿过程中极易产生泥化现象,影响铜矿物上浮。为此现场在选矿中通过添加大量石灰,利用高碱度和新型药剂T506来抑制黄铁矿的上浮。试验室闭路试验表明:采用现场一粗三扫三精浮选流程,在粗选作业段采用新型抑制剂T506替代部分石灰,并适当增加Na2S用量,精选作业段在pH=11的基础上适量增加T506用量,可获得精矿铜品位为19.72%,金品位为2.66×10-6,银品位300.36×10-6,铜回收率为65.50%,金回收率为18.36%,银回收率为35.92%的试验指标。精矿品位较现场生产条件提高了9.18%,铜选矿作业回收率提高了4.87%。

关键词: 氧化铜, 工艺矿物学, 抑制剂, 浮选优化, 高海拔环境

Abstract:

The grade of high-altitude complex copper oxide flotation concentrates treated in a large-scale concentrator in Tibet was unqualified,and the recovery rate was not satisfactory.Through the study of mineralogy of minerals,the embedding characteristics of metal minerals and gangue minerals was obtained.The secondary copper ores with high copper content as well as the mineral arsenic bismuth copper ore are closely embedded with pyrite,where a mixture of copper and iron minerals often forms,which can affect the quality of copper concentrate and the recovery rate of copper.There are a certain amount of muscovite,feldspar,gypsum and calcite in the ores.Muddy phenomenon is prone to occur during the grinding process,which can affect the copper mineral floating.Thus,the optimization of grinding fineness and flotation reagent system for this refractory oxide copper ore was carried out in this study.On the spot,a large amount of lime was added,and the pH value was adjusted to 11 using high alkalinity to inhibit the rise of pyrite.From the study of process mineralogy,it was known that pyrite was dissolved by pyrite,and pyrite was suppressed at the same time.It will affect the rise of copper minerals.The new drug T506 is an inhibitor developed for the characteristics of pyrite.This inhibitor interacts with the surface of pyrite by adjusting the arrangement of polar groups to achieve the effect of inhibiting the rise of pyrite.The laboratory closed-circuit test was conducted in condition of the copper oxidation rate of ore is 36.80%,where combined copper oxide is 16.59%,copper grade is 0.51%,gold grade is 0.25×10-6,and silver grade is 14.24×10-6.In the selection process,the new inhibitor T506 is used to replace part of the lime in the rough selection section,and the amount of sodium sulfide is appropriately increased.On the basis of ensuring the pH value of 11 in the selected operation section,the amount of T506 is increased in an appropriate amount to obtain a concentrate with a copper grade of 19.72%,a gold grade of 2.66×10-6,a silver grade of 300.36×10-6, a copper recovery rate of 65.50%,a gold recovery rate of 18.36% and a silver recovery rate of 35.92%.The concentrate grade increased by 9.18% compared with the one in on-site production conditions,and the copper beneficiation recovery rate increased by 4.87%.Under the premise of ensuring the qualified copper grade of the produced concentrate,the recovery rate of copper is correspondingly increased,and the purpose of increasing the economic benefits of the enterprise and comprehensively utilizing valuable mineral resources is achieved.

Key words: copper oxide, process mineralogy, inhibitor, flotation optimization, high altitude environment

中图分类号: 

  • TD952

表1

原矿多元素分析结果"

元素 质量分数 元素 质量分数
Cu 0.51 Ag 13.09
Pb 0.17 Au 0.26
Zn 0.06 Mo 0.023

表2

原矿铜物相分析结果"

铜物相 质量分数 占比
总铜 0.524 100.00
硫酸铜 0.001 0.10
自由氧化铜 0.106 20.21
结合氧化铜 0.087 16.59
次生硫化铜 0.021 4.00
原生硫化铜 0.310 59.10

表3

原矿钼物相分析结果"

钼物相 质量分数 占比
总钼 0.023 100.00
硫化钼 0.018 78.26
氧化钼 0.005 21.74

表4

铜矿物嵌布特征检测结果"

嵌布特征 质量分数
合计 100.00
脉石粒间 41.86
脉石裂隙 30.18
脉石与硫化物粒间 16.38
硫化物中 2.43
脉石中 9.15

表5

磨矿细度条件试验结果"

磨矿细度(-0.074 mm含量)/% 样品名称 产率/% 铜品位/% 铜回收率/%
65 铜粗精矿 14.18 2.07 58.76
尾矿 85.82 0.24 41.24
原矿 100.00 0.51 100.00
67 铜粗精矿 13.98 2.14 59.18
尾矿 86.02 0.24 40.82
原矿 100.00 0.51 100.00
70 铜粗精矿 14.38 2.18 61.41
尾矿 85.62 0.23 38.59
原矿 100.00 0.51 100.00
75 铜粗精矿 13.67 2.31 61.40
尾矿 86.33 0.23 38.60
原矿 100.00 0.51 100.00

表6

T506用量试验结果"

T506用量/(g·t-1 样品名称 产率/% 铜品位/% 铜回收率/%
50 铜粗精矿 9.56 3.12 58.92
尾矿 90.44 0.23 41.08
原矿 100.00 0.51 100.00
100 铜粗精矿 10.34 3.12 60.99
尾矿 89.66 0.23 39.01
原矿 100.00 0.53 100.00
200 铜粗精矿 11.11 2.89 61.10
尾矿 88.89 0.23 38.90
原矿 100.00 0.53 100.00
300 铜粗精矿 10.85 2.91 60.63
尾矿 89.15 0.23 39.37
原矿 100.00 0.52 100.00

表7

Na2S用量试验结果"

Na2S用量/(g·t-1 样品名称 产率/% 铜品位/% 铜回收率/%
0,pH=7 铜粗精矿 5.04 3.77 37.04
尾矿 94.96 0.34 62.96
原矿 100.00 0.51 100.00
50,pH=7~8 铜粗精矿 10.85 2.98 61.20
尾矿 89.15 0.23 38.80
原矿 100.00 0.53 100.00
150,pH=7~8 铜粗精矿 10.59 3.07 62.31
尾矿 89.41 0.22 37.69
原矿 100.00 0.52 100.00
300,pH=7~8 铜粗精矿 10.21 3.41 66.95
尾矿 90.44 0.19 33.05
原矿 100.65 0.52 100.00
400,pH=8 铜粗精矿 11.11 3.24 68.07
尾矿 88.89 0.19 31.93
原矿 100.00 0.53 100.00
500,pH=8 铜粗精矿 12.14 2.91 67.92
尾矿 87.86 0.19 32.08
原矿 100.00 0.52 100.00

表8

丁基黄药用量试验结果"

丁基黄药用量/(g·t-1 样品名称 产率/% 铜品位/% 铜回收率/%
50 铜粗精矿 11.37 3.01 65.88
尾矿 88.63 0.20 34.12
原矿 100.00 0.52 100.00
70 铜粗精矿 11.97 3.00 68.23
尾矿 88.03 0.19 31.77
原矿 100.00 0.53 100.00
90 铜粗精矿 12.47 2.89 68.41
尾矿 87.53 0.19 31.59
原矿 100.00 0.53 100.00
110 铜粗精矿 13.51 2.67 68.70
尾矿 86.49 0.19 31.30
原矿 100.00 0.52 100.00

表9

扫选Na2S用量试验结果"

试验条件 样品名称 产率/% 铜品位/% 铜回收率/%
Na2S的用量为(0+0)(扫Ⅰ+扫Ⅱ,g/t),pH=7 铜粗精矿 11.68 3.05 68.28
中矿一 2.38 0.64 2.92
中矿二 1.11 0.48 1.02
尾矿 84.83 0.17 27.78
原矿 100.00 0.52 100.00
Na2S的用量为(150+50)(扫Ⅰ+扫Ⅱ,g/t),pH=7~8 铜粗精矿 11.88 3.01 68.15
中矿一 2.59 0.80 3.95
中矿二 1.35 0.60 1.54
尾矿 84.18 0.16 26.36
原矿 100.00 0.52 100.00
Na2S的用量为(300+150)(扫Ⅰ+扫Ⅱ,g/t),pH=7~8 铜粗精矿 11.79 3.05 68.10
中矿一 2.77 0.76 3.98
中矿二 1.47 0.62 1.72
尾矿 84.62 0.16 26.21
原矿 100.00 0.53 100.00

表10

精选条件优化试验结果"

石灰用量/(g·t-1) T506用量(精Ⅰ+精Ⅱ)/(g·t-1 样品名称 产率/% 铜品位/% 铜回收率/%
0,pH=7 30+10 铜精矿 1.9 8.47 30.82
中矿 11.02 1.77 37.36
尾矿 87.08 0.19 31.82
原矿 100.00 0.52 100.00
50+30 铜精矿 1.42 10.47 27.98
中矿 11.24 1.92 40.73
尾矿 87.35 0.19 31.29
原矿 100.00 0.53 100.00
80+50 铜精矿 0.44 12.26 10.22
中矿 10.88 1.86 57.9
尾矿 88.68 0.19 31.88
原矿 100.00 0.53 100.00
400,pH=11 10+0 铜精矿 1.34 11.75 30.01
中矿 10.98 1.83 38.27
尾矿 87.68 0.19 31.72
原矿 100.00 0.53 100.00
30+10 铜精矿 0.77 24.14 35.41
中矿 10.77 1.6 32.68
尾矿 88.46 0.19 31.91
原矿 100.00 0.53 100.00
50+30 铜精矿 0.76 26.37 38.21
中矿 11.63 1.34 29.87
尾矿 87.62 0.19 31.92
原矿 100.00 0.52 100.00

表11

开路试验结果"

样品名称 产率 铜品位 铜回收率
铜精矿 0.71 24.15 30.77
中矿一 0.31 4.16 2.31
中矿二 3.33 3.48 20.96
中矿三 9.74 0.82 14.44
中矿四 2.56 0.79 3.66
中矿五 1.79 0.59 1.91
中矿六 1.28 0.55 1.27
尾矿 80.27 0.17 24.56
原矿 100.00 0.55 100.00

图1

闭路试验流程"

表12

闭路试验结果"

样品名称 产率/% 品位 回收率/%
Cu/% Au/×10-6 Ag/×10-6 Cu Au Ag
铜精矿 1.70 19.72 2.66 300.36 65.50 18.36 35.92
尾矿 98.30 0.18 0.21 9.29 34.50 81.64 64.08
原矿 100.00 0.51 0.25 14.24 100.00 100.00 100.00
1 王鹏程,陈志勇,曹志明,等 .氧化铜矿石的选矿技术现状与展望[J].金属矿山,2016,45(5):106-112.
Wang Pengcheng , Chen Zhiyong , Cao Zhiming ,et al .Present situation and prospect of beneficiation technology of copper oxide ore[J].Metal Mine,2016,45(5):106-112.
2 王凯,崔毅琦,童雄,等 .难选氧化铜矿石的选矿方法及研究方向[J].金属矿山,2012,41(8):80-83,117.
Wang Kai , Cui Yiqi , Tong Xiong ,et al .Beneficiation method and research direction of refractory oxidized copper ores[J].Metal Mine,2012,41(8):80-83,117.
3 丁鹏,刘全军,逄文好 .哈萨克斯坦某低品位高氧化率铜矿选矿试验研究[J].有色金属(选矿部分),2014(1):9-12.
Ding Peng , Liu Quanjun , Pang Wenhao .Study on beneficiation of a low-grade copper ore with high oxidation rate of Kazakhstan[J].Nonferrous Metals(Mineral Processing Section),2014(1):9-12.
4 李潇雨,周满赓,王婧,等 .攀西钒钛磁铁矿硫族元素工艺矿物学研究[J].中国矿业,2016,25(1):118-124,134.
Li Xiaoyu , Zhou Mangeng , Wang Jing ,et al .Craft mineralogy research of chalcogens in Panxi vanadium-titanium magnetite[J].China Mining Magazine,2016,25(1):118-124,134.
5 谢峰,张汉平,陈献梅 .云南某沉积型铝土矿工艺矿物学研究[J].矿冶,2015,24(2):81-84.
Xie Feng , Zhang Hanping , Chen Xianmei .Study on process mineralogy of a sedimentary bauxite in Yunnan[J].Mining and Metallurgy,2015,24(2):81-84.
6 李红立,廖璐,尹江生,等 .内蒙古某稀有稀土矿工艺矿物学研究[J].内蒙古科技与经济,2016(3):76-78.
Li Hongli , Liao Lu , Yin Jiangsheng ,et al .Study on mineralogical technology of a rare mineral in Inner Mongolia[J].Inner Mongolia Science Technology and Economy,2016(3):76-78.
7 王立刚,刘万峰,孙志健 .西藏玉龙铜矿氧化铜钼矿选矿试验研究[J].有色金属(选矿部分),2009(4):1-3,11.
Wang Ligang , Liu Wanfeng , Sun Zhijian .The mineral processing research on oxidized copper-molybdemun ore from tibet yulong copper mine[J].Nonferrous Metals (Mineral Processing Section),2009(4):1-3,11.
8 方建军,李艺芬 .氧化铜矿的工艺矿物学特征与选矿工艺研究[J].云南冶金,2005,34(4):50-53.
Fang Jianjun , Li Yifen .Study on technological mineralogy and concentration of oxide copper ore[J].Yunnan Metallurgy,2005,34(4):50-53.
9 青岩,郭文鹏,张海荣,等 .玉龙铜矿难选氧化铜矿高效选矿及工业应用研究[J].中国矿山工程,2018,47(4):4-8,20.
Qing Yan, Guo Wenpeng , Zhang Hairong ,et al .Study on efficiency ore dressing and industrial application of refractory oxidized copper ore in Yulong copper mine[J].China Mine Engineering,2018,47(4):4-8,20.
10 孙志健,陈经华,李成必,等 .某含泥难选氧化铜矿选矿试验研究[J].有色金属(选矿部分),2013(4):5-8,13.
Sun Zhijian , Chen Jinghua , Li Chengbi ,et al .Study on the beneficiation test of a refractory oxide copper ore containing high-content slimes[J].Nonferrous Metals (Mineral Processing Section),2013(4):5-8,13.
11 邱廷省,郑锡联,冯金妮 .氧化铜矿石选矿技术研究进展[J].金属矿山,2011,40(12):82-86.
Qiu Tingsheng , Zheng Xilian , Feng Jinni .Research progress of mineral processing technology of copper oxide ore [J].Metal Mine,2011,40(12):82-86.
12 蒋太国,方建军,张铁民,等 .氧化铜矿选矿技术研究进展[J].矿产保护与利用,2014(4):49-53.
Jiang Taiguo , Fang Jianjun , Zhang Tiemin ,et al .Progress in copper oxide ores beneficiation technology[J].Conservation and Utilization of Mineral Resources,2014(4):49-53.
13 赖亚J .泡沫浮选表面化学[M].何伯泉,陈祥涌,译.北京:冶金工业出版社,1987.
Laiya J .Foam Flotation Surface Chemistry[M].He Boquan,Chen Xiangyong,transl.Beijing:Metallurgical Industry Press,1987.
14 陈经华,孙志健,叶岳华 .同步浮选和异步浮选在氧化铜矿选矿中的应用研究[J].有色金属(选矿部分),2013(增):67-69.
Chen Jinghua , Sun Zhijian , Ye Yuehua .Research on application of synchronous and asynchronous floating in oxidizing copper mine[J].Nonferrous Metals(Mineral Processing Section),2013(Supp.):67-69.
15 唐平宇,王素,田江涛,等 .山西某难选氧化铜矿选矿试验研究[J].有色金属(选矿部分),2013(5):10-13.
Tang Pingyu , Wang Su , Tian Jiangtao ,et al .Experiment study on mineral processing of a refractory oxide copper ore of Shanxi[J].Nonferrous Metals(Mineral Processing Section),2013(5):10-13.
16 朱建光,朱一民 .浮选药剂的同分异构原理和混合用药[M].长沙:中南大学出版社,2011:303-311.
Zhu Jianguang , Zhu Yimin .Principle of Isomerism and Mixture of Floating Pharmaceutical[M].Changsha:Central South University Press,2011:303-311.
17 周源,艾光华 .提高某难选氧化铜矿石铜回收率的试验研究[J].金属矿山,2005,35(10):44-46.
Zhou Yuan , Ai Guanghua .Test on improving copper recovery of a refractory copper oxide ore [J].Metal Mine,2005,35(10):44-46.
18 熊文良 .印尼某氧化铜矿选矿试验研究[J].金属矿山,2011,40(9):94-96.
Xiong Wenliang .Beneficiation study on a copper oxide ore from Indonesia[J].Metal Mine,2011,40(9):94-96.
19 张二林,朱雅卓,胡波,等 .西藏地区某高泥质氧化铜矿选矿试验研究[J].湖南有色金属,2015,31(5):16-18,41.
Zhang Erlin , Zhu Yazhuo , Hu Bo ,et al .Experiment study on a high-pelitic copper oxide in Tibet[J].Hunan Nonferrous Metals,2015,31(5):16-18,41.
[1] 唐浪峰,盛秋月,马英强,印万忠. 非洲中南部某镍矿石工艺矿物学性质[J]. 黄金科学技术, 2019, 27(2): 285-291.
[2] 赵文强,姜传进,石宝宝. 氰化尾渣选硫工艺优化研究[J]. 黄金科学技术, 2019, 27(1): 129-136.
[3] 宋学文,朱加乾,罗增鑫,陈波. 某氰渣工艺矿物学及金浮选工艺研究[J]. 黄金科学技术, 2018, 26(1): 89-97.
[4] 王永良,吕翠翠,肖力,丁剑,付国燕,叶树峰. 氰化尾渣中抑砷富集硫铁的研究[J]. 黄金科学技术, 2016, 24(4): 144-148.
[5] 陈道前,傅开彬,董发勤,胡如权,邓全淋,徐龙华,张亚龙,杨永强. 四川里伍铜矿多金属低品位尾矿工艺矿物学研究[J]. 黄金科学技术, 2015, 23(6): 70-74.
[6] 马玉天,陈大林,陈治毓,钟清慎,黄虎军,杜彦君. 高砷高硫难处理金精矿预处理工艺研究[J]. 黄金科学技术, 2014, 22(4): 103-107.
[7] 林鸿汉. 某含金铜废石资源化利用试验研究[J]. 黄金科学技术, 2014, 22(3): 77-81.
[8] 曹成超. 新疆某矿山浮选试验研究[J]. 黄金科学技术, 2014, 22(3): 70-76.
[9] 周有勤. 金的地质冶金学及其应用[J]. 黄金科学技术, 2013, 21(5): 76-80.
[10] 张德良,曲洪俊,刘永国,李尧国,殷清. 利用碳抑制剂降低含碳氰渣中金品位的试验研究[J]. 黄金科学技术, 2013, 21(3): 91-94.
[11] 陈剑锋,陈剑,文扬思. 广西田东某低品位难处理金矿石选矿试验研究[J]. J4, 2010, 18(6): 46-50.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] 宋贺民, 冯喜利, 丁宪华. 太行山北段交界口矿区地质地球化学特征及找矿方向[J]. J4, 2010, 18(3): 54 -58 .
[2] 杨明荣, 牟长贤. 原子荧光法测定化探样品中砷和锑的不确定度评定[J]. J4, 2010, 18(3): 68 -71 .
[3] 闫杰, 覃泽礼, 谢文兵, 蔡邦永. 青海南戈滩—乌龙滩地区多金属地质特征与找矿潜力[J]. J4, 2010, 18(4): 22 -26 .
[4] 姜琪, 王荣超. 甘肃枣子沟金矿床形成环境及矿床成因[J]. J4, 2010, 18(4): 37 -40 .
[5] 李洪杰, 戚静洁, 马树江. 胶西北地区金矿床构造控矿规律[J]. J4, 2010, 18(4): 41 -46 .
[6] 原冬成, 徐小凤. 山东曹家埠金矿床的成矿机理与找矿前景[J]. J4, 2010, 18(4): 47 -49 .
[7] 衣存昌, 臧恩光. 黑龙江老柞山金矿成矿规律及深部找矿探讨[J]. J4, 2010, 18(4): 58 -61 .
[8] 冷寒松, 邓尧增, 胥华龙, 刘涛, 王卓. 有底柱分段崩落采矿法在焦家金矿的研究与应用[J]. J4, 2010, 18(4): 65 -67 .
[9] 刘金鹏, 刘万强, 李定坤, 李天栋. 金亭岭金矿竖井提升系统的合理化改造[J]. J4, 2010, 18(4): 80 -81 .
[10] 刘远华, 杨贵才, 张轮, 齐金忠, 李文良. 西秦岭阳山超大型金矿床花岗岩岩石地球化学特征[J]. J4, 2010, 18(6): 1 -7 .