img

QQ群聊

img

官方微信

高级检索

黄金科学技术 ›› 2019, Vol. 27 ›› Issue (4): 522-529.doi: 10.11872/j.issn.1005-2518.2019.04.522

• 采选技术与矿山管理 • 上一篇    下一篇

海底倾斜矿体开采沉陷预测研究

曹家源1,2,3(),马凤山1,2(),郭捷1,2,张国栋4,李兆平4   

  1. 1. 中国科学院地质与地球物理研究所,中国科学院页岩气与地质工程重点实验室,北京 100029
    2. 中国科学院地球科学研究院,北京 100029
    3. 中国科学院大学,北京 100049
    4. 山东黄金矿业(莱州)有限公司三山岛金矿,山东 莱州 261442
  • 收稿日期:2018-07-31 修回日期:2019-01-03 出版日期:2019-08-31 发布日期:2019-08-19
  • 通讯作者: 马凤山 E-mail:313052383@qq.com;fsma@mail.iggcas.ac.cn
  • 作者简介:曹家源(1990-),男,山东威海人,博士研究生,从事矿山地质工程与地质灾害研究工作。313052383@qq.com
  • 基金资助:
    国家自然科学基金项目“海底采矿对地质环境的胁迫影响与致灾机理”(41831293);“金属矿山地下采动引起的竖井变形破坏机理研究”(41772341)

Study on Subsidence Prediction of Inclined Orebody Cut and Fill Mining in Seabed

Jiayuan CAO1,2,3(),Fengshan MA1,2(),Jie GUO1,2,Guodong ZHANG4,Zhaoping LI4   

  1. 1. Key Laboratory of Shale Gas and Geoengineering, Institute of Geology and Geophysics, Chinese Academy of Sciences, Beijing 100029, China
    2. Institutions of Earth Science, Chinese Academy of Sciences, Beijing 100029, China
    3. University of Chinese Academy of Sciences, Beijing 100049, China
    4. Sanshandao Gold Mine, Shandong Gold Mining (Laizhou) Co. , Ltd. , Laizhou 261442, Shandong, China
  • Received:2018-07-31 Revised:2019-01-03 Online:2019-08-31 Published:2019-08-19
  • Contact: Fengshan MA E-mail:313052383@qq.com;fsma@mail.iggcas.ac.cn

摘要:

三山岛金矿新立矿区是我国唯一一座海底金属矿山,其对开采技术的要求较高,海下开采遇到了严重的安全问题,其中海底移动变形对采矿安全造成重大威胁。金属矿开采所引起的覆岩移动和变形是一个复杂的力学问题,掌握采空区覆岩体采动岩体移动规律和实现对覆岩沉陷的有效预测是新立矿区亟待解决的重要课题。通过对新立矿区井下55线各中段石门巷道顶板位移进行监测,得到了充填法开采倾斜金属矿体的覆岩移动和变形特征。在此基础上,提出了倾斜金属矿体充填采矿法引发覆岩内部移动和变形的悬臂梁机制。最后,通过分析顶板位移监测数据和位移曲线特征,提出了倾斜矿体充填法开采覆岩沉陷预测的轮廓函数方法。该方法由几个指数函数组成,采用该方法得到的沉陷预测曲线与实测结果十分接近,预测准确率都在85%以上。该研究结果对海底矿山的安全生产具有重要的指导意义。

关键词: 倾斜矿体, 覆岩移动, 轮廓函数法, 沉陷预测, 海底金属矿山, 矿山安全, 三山岛金矿

Abstract:

Xinli mining area of Sanshandao gold mine is the only undersea metal mines in China,its mining technology demand is higher,and also have serious security problems.At present,at home and abroad,the research on the prediction of rock mass movement and surface subsidence caused by coal mining is relatively mature,and a variety of practical subsidence models and realistic surface subsidence prediction methods are formed.However,most large and medium metal mines are mined using filling methods.The effect of repeated mining not only makes the mines face new deformation and damage of the filling body,and with the continuous expansion of the scale of the filling body,the large-scale deformation and destruction of the filling body further complicates the movement of rock mass.Finally,threatening the safe production of mines.With the popularization of filling mining methods,the law of rock mass movement and surface deformation caused by filling mining has become an urgent problem to be solved.The in-depth study of this problem can provide the basis for rock movement and surface settlement for the safe mining design of submarine mines,and provide a conceptual model for the prediction of rock mass movement and surface settlement caused by mining.So,grasping mining-induced movement rules of overburden above goaf and realizing valid predictions for overburden movement are the problems to be solved for Xinli seabed gold mine.The monitoring of the displacement of rock mass is a direct means to study the movement and deformation of rock mass caused by inclined orebody mining.The movement and deformation characteristics of inclined overburden in mining by filling method are obtained by monitoring the displacement of roof of each level of the 55 lines underground in Xinli mining area.On this basis,the paper firstly proposed a cantilever mechanism to explain movement and deformation in overburden rocks triggered by cut and fill mining method in metal mines with inclined veins.Based on the analysis of the displacement monitoring data of roof,and according to the characteristics of the displacement curve,the profile functions method is proposed to predict the subsidence of inclined overburden in mining by filling method.The method consists of several exponential functions and the subsidence curve obtained by this method is very close to the measured results.And the accuracy of the prediction is all above 85%.Therefore,the research results have important guiding significance for the safe production of submarine mines.

Key words: inclined orebody, overburden movement, profile function method, subsidence prediction, submarine metal mine, mine safety, Sanshandao gold mine

中图分类号: 

  • TD325

图1

新立矿区金矿床分布图"

图2

新立矿区东北翼浅部中段开拓分布图"

图3

31线断裂蚀变带地质剖面图"

图4

各中段监测点布设图"

图5

新立矿区井下位移监测曲线(沉降值扩大100倍)"

图6

充填开采倾斜矿体覆岩移动和变形机制"

图7

轮廓函数示意图"

表1

沉陷预测曲线参数"

参数 中段/m
-200 -240 -320 -400 -480
x 01 -18.83 -10.28 -13.18 2.124 0.857
B 1 143.6 194 186.6 523.4 347
D 1 37.27 51.73 24.85 134.3 3.941
x 02 -28.38 -9.577 -7.194 0.5013 1.698
B 2 268.7 335.1 242.5 310.2 229.5
D 2 132.6 134.6 42.97 493.3 7.9e+5
x 03 21.76 11.96 -16.07 -12.31 -19.8
B 3 499.2 527.8 303.8 239.5 57.83
D 3 14.86 16.13 164.9 66.91 30.14
x 04 - - - - -4.921
B 4 - - - - 138.1
D 4 - - - - 29.5

图8

预测沉降曲线与实测数据比较"

1 杜国栋,李晓,丁恩保 .矿体倾角对地表沉降的影响研究[J].金属矿山,2006(2):9-11.
Du Guodong , Li Xiao , Ding Enbao .Effect of dip angle of orebody on surface subsidence[J].Metal Mine,2006(2):9-11.
2 白义如,谷志孟,白世伟 .程潮铁矿东区地下采矿引起地表沉降和岩层移动初探[J].岩石力学与工程学报,2002,21(3):340-342.
Bai Yiru , Gu Zhimeng , Bai Shiwei .Primary study on ground surface subsidence and rockmass movement in east area of Chenchao iron mine due to underground mining[J].Chinese Journal of Rock Mechanics and Engineering,2002,21(3):340-342.
3 Tomaz A , Goran T .Prediction of subsidence due to underground mining by artificial neural networks[J].Computers and Geosciences,2003,5:20-29.
4 Whittaker B N .Surface subsidence aspects of room and pillar mining[J].Mining Department Magazine,1985,37:59-67.
5 Li W X .Fuzzy models for estimation of surface ground subsidence[J].Systems Science and Mathematical Sciences,1990,3:41-52.
6 Asadi A , Shakhriar K , Goshtasbi K .Profiling function for surface subsidence prediction in mining inclined coal seams [J].Journal of Mining Science,2004,40:142-146.
7 Zhou D W , Wu K , Miao X X ,et al .Combined prediction model for mining subsidence in coal mining areas covered with thick alluvial soil layer[J].Bulletin Engineering Geology and the Environment,2018,77(1):283-304.
8 González Nicieza C , Álvarez Fernández M I , Menéndez Díaz A ,et al .The new three-dimensional subsidence influence function denoted by n-k-g [J].International Journal of Rock Mechannics and Mining Sciences,2005,42(3):372-387.
9 Sheorey P R , Loui J P , Singh K B ,et al .Ground subsidence observations and a modified influence function method for complete subsidence prediction[J].International Journal of Rock Mechanics and Mining Sciences,2000,37(5):801-818.
10 Singh R P , Yadav R N .Prediction of subsidence due to coal mining in Raniganj coalfield,West Bengal,India[J].Engineering Geology,1995,39(1/2):103-111.
11 Whittaker B N , Reddish D J .Subsidence Ocurrence,Prediction and Control[M]. Amsterdam:Elsevier,1989.
12 Deng J , Bian L .Investigation and characterization of mining subsidence in Kaiyang phosphorus mine[J].Journal of Central South University of Technology,2007,14(3):413-417 .
13 Jarosz A , Karmis M , Sroka A .Subsidence development with time experiences from longwall operations[J].Geotechnical and Geological Engineering,1990,8(3):261-273.
14 Liang Q , Wen X , He G .Study on calculation methods for surface subsidence caused by water loss of clay[J].Journal of Mineral Safety and Engineering,2007,24:105-108.
15 Díez R R , Álvarez J T .Hypothesis of the multiple subsidence trough related to very steep and vertical coal seams and its prediction through profile functions[J].Geotechnical and Geological Engineering,2000,18(4):289-311.
16 Kratzsch H .Mining Subsidence Engineering[M].Berlin Heidelberg:Springer,1983.
17 戴华阳,王金庄,蔡美峰 .岩层与地表移动的矢量预计法[J].煤炭学报,2002,27(5):473-478.
Dai Huayang , Wang Jinzhuang , Cai Meifeng .Extraction-vectorized prediction method for rock and surface movement[J].Journal of China Coal Society,2002,27(5):473-478.
18 李永树 .不规则形状地下空间开挖条件下地表沉陷预计方法研究[J].测绘工程,2001,10(3):13-16.
Li Yongshu .Method for prediction of surface subsidence in excavating underground rooms of irregular shape[J].Engineering of Surveying and Mapping,2001,10(3):13-16.
19 张华兴,仲伟林 .受断层影响的地表移动计算[J].煤炭学报,1995,20(2):163-166.
Zhang Huaxing , Zhong Weilin .Calculation of surface movement incurred by fault [J].Journal of China Coal Society,1995,20(2):163-166.
[1] 李威,马凤山,卢湘鹏,曹家源,郭捷. 基于三维地震探测的海底矿区地质结构分析[J]. 黄金科学技术, 2019, 27(4): 530-538.
[2] 段学良,马凤山,赵海军,郭捷,顾鸿宇,刘帅奇. 滨海矿山矿坑涌水源识别与混合比研究[J]. 黄金科学技术, 2019, 27(3): 406-416.
[3] 刘国伟,马凤山,郭捷,杜云龙,侯成录,李威. 多元统计分析在滨海矿区水源识别中的应用——以三山岛金矿为例[J]. 黄金科学技术, 2019, 27(2): 207-215.
[4] 马凤山,李克蓬,杜云龙,侯成录,李威,张国栋 . 三山岛金矿海底开采F1断裂防突结构可能的破坏形式分析 [J]. 黄金科学技术, 2017, 25(5): 47-56.
[5] 毕林,谢伟,崔君. 基于卷积神经网络的矿工安全帽佩戴识别研究[J]. 黄金科学技术, 2017, 25(4): 73-80.
[6] 白德胜,杨怀辉,聂建民. 河南槐树坪矿区缓倾斜金矿体特征及找矿方向[J]. 黄金科学技术, 2017, 25(1): 18-26.
[7] 马凤山,郭捷,李克蓬,卢蓉,张洪训,李威. 三山岛海底金矿开采充填体与顶板岩层的变形监测研究[J]. 黄金科学技术, 2016, 24(4): 66-72.
[8] 李克蓬,马凤山,郭捷,卢蓉,张洪训,李威. 三山岛海底金矿开采充填体与围岩变形规律的数值模拟[J]. 黄金科学技术, 2016, 24(4): 73-80.
[9] 胡毅夫,汪业青,聂峥,马元军,张常亮. 渣滓溪锑矿岩爆防治方法研究[J]. 黄金科学技术, 2016, 24(3): 9-13.
[10] 冯雪飞,罗周全,汪伟,路凡. 采空区失稳辨析的RS-CPM方法研究及应用[J]. 黄金科学技术, 2015, 23(3): 67-72.
[11] 吴若菡,贾万玉,刘国栋. 三山岛金矿溜矿系统防尘措施探讨[J]. 黄金科学技术, 2015, 23(3): 73-76.
[12] 赵龙,吴昌晓,孙铭骏,王楠. 三山岛金矿深井充填系统影响因素分析及优化[J]. 黄金科学技术, 2014, 22(6): 46-49.
[13] 赵龙,王楠,孙铭骏. 盘区充填采矿法二步采转层优化在三山岛金矿的应用[J]. 黄金科学技术, 2013, 21(6): 73-77.
[14] 王振军,李伟明,原波. 山东三山岛—新立—仓上金矿床构造叠加晕特征浅析[J]. 黄金科学技术, 2013, 21(4): 48-53.
[15] 丁剑锋,刘丰韬,陈国平,王芳,陈兵宇,武志明,王莉,王京生. 化学注浆技术在三山岛金矿的研究与应用[J]. J4, 2012, 20(4): 54-57.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] 杨明荣, 牟长贤. 原子荧光法测定化探样品中砷和锑的不确定度评定[J]. J4, 2010, 18(3): 68 -71 .
[2] 李斌, 邹海洋, 杨牧, 杜高峰, 韦继康, 王天国. 马来西亚吉兰丹州Ulu Sokor金矿地质特征及找矿方向[J]. J4, 2010, 18(4): 17 -21 .
[3] 闫杰, 覃泽礼, 谢文兵, 蔡邦永. 青海南戈滩—乌龙滩地区多金属地质特征与找矿潜力[J]. J4, 2010, 18(4): 22 -26 .
[4] 姜琪, 王荣超. 甘肃枣子沟金矿床形成环境及矿床成因[J]. J4, 2010, 18(4): 37 -40 .
[5] 李洪杰, 戚静洁, 马树江. 胶西北地区金矿床构造控矿规律[J]. J4, 2010, 18(4): 41 -46 .
[6] 原冬成, 徐小凤. 山东曹家埠金矿床的成矿机理与找矿前景[J]. J4, 2010, 18(4): 47 -49 .
[7] 陆树林, 苏建华. 顶吹烟化法在回收铟中的应用[J]. J4, 2010, 18(4): 71 -74 .
[8] 刘远华, 杨贵才, 张轮, 齐金忠, 李文良. 西秦岭阳山超大型金矿床花岗岩岩石地球化学特征[J]. J4, 2010, 18(6): 1 -7 .
[9] 刘东海, 刘新会. 西秦岭寨上特大型金矿床黄铁矿特征及其含金性研究[J]. J4, 2010, 18(6): 8 -12 .
[10] 胡琴霞, 孙彬, 亢瑜, 李淑芳, 张圣潇. 甘肃北金山金矿地质特征及成因[J]. J4, 2010, 18(6): 18 -21 .