img

QQ群聊

img

官方微信

高级检索

黄金科学技术 ›› 2019, Vol. 27 ›› Issue (4): 505-512.doi: 10.11872/j.issn.1005-2518.2019.04.505

• 采选技术与矿山管理 • 上一篇    下一篇

上覆公路浅埋采空区群稳定性数值模拟

杨仕教1(),王志会2   

  1. 1. 南华大学资源环境与安全工程学院,湖南 衡阳 421001
    2. 北京科技大学土木与资源工程学院,北京 100083
  • 收稿日期:2018-05-22 修回日期:2019-04-12 出版日期:2019-08-31 发布日期:2019-08-19
  • 作者简介:杨仕教(1964-),男,湖南浏阳人,教授,从事采矿工程研究工作。cute1088@sina.com
  • 基金资助:
    国家自然科学基金项目“基于Multi-Agent的地下铀矿山安全系统动态协调机制设计与群体智能化控制”(51174116)

Numerical Simulation on Stability of Shallow-buried Goaf Group with Overlying Highway

Shijiao YANG1(),Zhihui WANG2   

  1. 1. School of Nuclear Resources Engineering,University of South China,Hengyang 421001,Hunan,China
    2. School of Civil and Resources Engineering,University of Science and Technology Beijing,Beijing 100083,China
  • Received:2018-05-22 Revised:2019-04-12 Online:2019-08-31 Published:2019-08-19

摘要:

某采石场开采形成了浅埋采空区群,且空区群上覆有一条县级公路。为确保上覆公路和采石场的安全运行,对采空区和上覆公路的稳定性进行了综合分析。首先,对采空区现状、工程地质和水文地质进行了调查;通过开展现场点荷载试验和室内岩石力学试验,获得了围岩的基本力学参数;随后,采用Heok-Brown准则及其强度参数的估计法,将岩石力学参数转化为岩体力学参数;接着,基于转换的力学参数,利用FLAC3D数值模拟软件对采空区和上覆公路进行了模拟分析,并探讨了采空区及行车荷载对上覆公路的影响。研究结果表明:采空区处于稳定状态,对上覆公路影响较小;公路总体稳定,但公路与采空区的相对空间位置引起的地表不均匀沉降带来的局部离层对于公路有一定的危害。根据分析结果,建议充填4#采空区以降低采空区暴露面积,减少采空区分布的不均匀性以减少对公路离层区的影响,对于公路的局部离层区可采取注浆加固。

关键词: 浅埋采空区群, 岩石力学参数, 稳定性, 数值模拟, 地表沉陷, 公路离层

Abstract:

After more than ten years of underground mining in a quarry in Liuyang City, a gob group was formed by four irregular goafs, and the gobs were close to the surface with a running county-level Jiuxi highway.In order to develop the next-stage mining plan and ensure the safe operation of the above-mentioned roads and the quarry, it is necessary to comprehensively analyze and judge the stability of the goaf group and the overlying road.Field surveys about occurrence condition of goafs, hydrogeology survey as well as engineering geometry survey were performed.On-site point sample loading experiments and indoor rock mechanics experiments were made and basic mechanical parameters of surrounding rock were obtained and then the chart of the discrete strength parameters of the rock was used to analysis the quality of rock mass.After that,the required strength parameters for numerical analysis were calculated out with the method of Hoek-Brown principle as well as some amendments of related strength parameters.Then, numerical model about shallow buried connected goaf groups of the quarry formed after mining as well as highway on topsoil over the goaf group was built to evaluate the stability of goafs and highway so as to bring forward corresponding measures.After the initial geo-stress simulation and the formation of the goafs, in order to explore the impact of the driving load on the goaf, the driving load is applied to the road surface in the form of normal pressure, and then calculated to balance.Comprehensive evaluations on stability of goafs show that goafs are basically in stable condition and the goafs have little influence on overlying highway.The results also indicate that the highway is generally stable with partial separation of layers.Due to the spatial distribution characteristics of the goafs, the subsidence curvature caused by the uneven settlement and the local separation of road layers are harmful to the highway.The distribution of separation zone presents the characteristics of overall dispersion and local concentration, that is, unevenly distributed local strip-shaped separation zone. To ensure the safety of goaf and healthy running of highway,disposal measures for goafs and the road were proposed.Overall, the relative spatial position of the highway and the goafs and the surface topography of the surface play a major role in controlling the damage form of the highway.To ensure the safety of the road and avoid the activation of the goafs.Finally, it is recommended to backfill the 4# goaf to reduce the non-uniformity of spatial distribution and reinforce the separation part of the road by local grouting.

Key words: shallow buried goaf group, rock mechanics parameters, stability, numerical simulation, surface subsidence, highway abscission

中图分类号: 

  • TD323

图1

采空区平面图"

表1

采空区基本情况"

采空区编号 采宽/m 采宽超幅/m 采长/m 空区面积/m2 采高/m 采高超幅/m 空区体积/m3 空区顶板距地表高度/m 是否采完
总计 4 520 44 120
空区1 14 4 100 1 400 13 3 18 200 40
空区2 10 / 200 2 000 8 / 16 000 80
空区3 8 / 40 320 6 / 1 920 85
空区4 10 / 80 800 10 / 8 000 90

图2

采空区与地表公路空间位置图"

表2

岩石力学强度参数离散性分析结果"

统计项目 Is/MPa Is(50)/MPa R C/MPa R t/MPa C/MPa Φ/(°) E/MPa v
统计总数 12 12 12 12 12 12 12 12
最大值 3.893 4.308 71.148 3.352 25.655 20.17 71 403.834 0.134
最小值 1.061 1.452 32.049 1.321 11.384 19.88 57 707.332 0.133
平均值 2.174 2.732 50.310 2.252 18.037 20.03 63 844.740 0.134
标准值 1.677 2.206 43.073 1.876 15.396 19.976 61 321.641 0.134
标准差 0.946 1.003 13.801 0.715 5.036 0.11 4 811.507 0.000
变异系数 0.435 0.367 0.274 0.318 0.279 0.01 0.075 0.003
统计修正系数 0.772 0.807 0.856 0.833 0.854 1.00 0.960 0.999

表3

室内岩石力学试验强度参数离散性统计"

统计项目 ρ/(kN·m-3 R C/MPa R t/MPa E/MPa v
统计总数 5 5 5 5 5
最大值 27.570 77.795 4.228 25.07 0.283
最小值 27.150 24.574 3.418 2.77 0.141
平均值 27.448 53.629 3.770 16.95 0.172
标准值 27.284 33.860 3.465 8.519 0.113
标准差 0.173 20.827 0.322 8.88 0.062
变异系数 0.006 0.388 0.085 0.52 0.362
统计修正系数 0.994 0.631 0.919 0.50 0.657

表4

岩体力学强度参数"

参数 数值 参数 数值
抗压强度/MPa 4.835 摩擦角/(o 34.15
抗拉强度/MPa 0.215 弹性模量/GPa 10.954
黏聚力/MPa 3.145

表5

网格组计算参数"

网格组 本构模型 弹性模量E 泊松比 容重/(kN·m-3) 内聚力/(kN·m-2) 摩擦角/(°)
面层 摩尔库伦 1 GPa 0.3 22 60 35
基层 摩尔库伦 500 MPa 0.25 21 45 30
垫层 摩尔库伦 200 MPa 0.3 20 30 25
表土 摩尔库伦 28 MPa 0.3 19 17 22
矿石及围岩 摩尔库伦 10.95 GPa 0.45 27.2 3 145 34.2

图3

地表沉陷云图"

图4

采空区引起的地表沉陷云图"

图5

顶板沉陷云图"

图6

顶板最大主应力云图"

图7

矿柱中等高度最大主应力云图"

图8

公路离层区域"

1 邓红卫,杨懿全,邓畯仁,等 .采空区下方高应力环境下深部矿体回采时序研究[J].黄金科学技术,2017,25(2):62-69.
Deng Hongwei , Yang Yiquan , Deng Junren , et al . Study on mining sequence of deep orebody under high stress environment below goaf [J]. Gold Science and Technology,2017,25(2):62-69.
2 Seryakov V M .Calculation of stress-strain state for an over-goaf rock mass[J]. Journal of Mining Science, 2009, 45(5): 420.
3 Hu Y , Li X .Bayes discriminant analysis method to identify risky of complicated goaf in mines and its application[J]. Transactions of Nonferrous Metals Society of China, 2012, 22(2): 425-431.
4 廖学东, 高明中 .开采方案对地表移动影响的数值模拟[J].采矿与安全工程学报, 2008,25(2):226-230.
Liao Xuedong , Gao Mingzhong .Numerical simulation of effect of mining scheme on ground movement[J].Journal of Mining and Safety Engineering, 2008,25(2):226-230.
5 Nie L , Zhang M , Jian H .Analysis of surface subsidence mechanism and regularity under the influence of seism and fault[J]. Natural Hazards, 2013, 66(2): 773-780.
6 Sheorey P R , Loui J P , Singh K B , et al . Ground subsidence observations and a modified influence function method for complete subsidence prediction[J]. International Journal of Rock Mechanics and Mining Sciences, 2000, 37(5): 801-818.
7 孙国权,李娟,胡杏保 .基于FLAC3D程序的采空区稳定性分析[J].金属矿山,2007,37(2):29-32.
Sun Guoquan , Li Juan , Hu Xingbao .FLAC3D-Based stability analysis of mined-out area[J].Metal Mine, 2007,37(2):29-32.
8 祁建东,高永涛,韩浩亮 .河流下伏采空区地表沉降规律及处治技术研究[J].金属矿山,2015,35(2):26-31.
Qi Jiandong , Gao Yongtao , Han Haoliang . Research on the surface subsidence regularity and treatment technique of goaf underlying river[J]. Metal Mine,2015,35(2):26-31.
9 王彦玮,张忠辉,邱俊刚,等 .山东望儿山金矿地表沉陷数值模拟研究[J].黄金科学技术,2011,19(3):72-76.
Wang Yanwei , Zhang Zhonghui , Qiu Jungang , et al . Numerical simulation of mining-induced subsidence in Wang’ershan gold mine,Shandong Province[J]. Gold Science and Technology, 2011,19(3):72-76.
10 付建新,宋卫东,杜建华 .金属矿山采空区群形成过程中围岩扰动规律研究[J].岩土力学,2013(增1):508-515.
Fu Jianxin , Song Weidong , Du Jianhua . Study of disturbance law for wall rock while goaf group formation in metal mines[J].Rock and Soil Mechanics, 2013(Supp.1): 508-515.
11 谷中元,周科平 .基于蠕变试验的浅埋空区群结构时变力学特性研究[J].黄金科学技术,2018,26(4):511-519.
Gu Zhongyuan , Zhou Keping . Study on time-variant mechanics properties of shallow goaf group based on creep experiment [J].Gold Science and Technology, 2018,26(4): 511-519.
12 胡高建,杨天鸿,张飞,等 .复杂空区群回采围岩破坏模式及区域并行研究[J].采矿与安全工程学报,2017,34(3):565-572.
Hu Gaojian , Yang Tianhong , Zhang Fei , et al .Parallel computing technologies for the failure mode and area of surrounding rock in complex goafs [J]. Journal of Mining and Safety Engineering, 2017,34(3):565-572.
13 彭帅英 .高速公路下伏多层采空区地表沉陷数值模拟及预测研究[D].长春:吉林大学,2013.
Peng Shuaiying .Numerical Simulation and Ground Subsidence Prediction for Multilayer Goafs Underlaying Highway[D].Changchun : Jilin University,2013.
14 董羽,黄玉诚,邓和浪,等 .基于FLAC3D 的公路下压煤巷式充填开采的数值模拟分析[J].煤矿安全,2014, 45(6):163-165,169.
Dong Yu , Huang Yucheng , Deng Helang , et al .Simulation analysis of roadway backfilling mining under highway based on FlAC3D[J].Safety in Coal Mines, 2014, 45(6): 163-165,169.
15 童立元,邱钰,刘松玉,等 .高速公路与下伏煤矿采空区相互作用规律探讨[J].岩石力学与工程学报,2010(11):2271-2276.
Tong Liyuan , Qiu Yu , Liu Songyu , et al .Discussion of interaction law of expressway and underlying mine goafs [J].Chinese Journal of Rock Mechanics and Engineering, 2010(11): 2271-2276.
16 童立元,刘松玉,邱钰,等 .高速公路下伏采空区问题国内外研究现状及进展[J].岩石力学与工程学报,2004(7):1198-1202.
Tong Liyuan , Liu Songyu , Qiu Yu , et al .Current research state of problems associated with mined-out regions under expressway and future development [J].Chinese Journal of Rock Mechanics and Engineering, 2004(7):1198-1202.
17 童立元,刘松玉,邱钰 .高速公路下伏采空区危害性评价与处治技术 [M].南京:东南大学出版社,2006.
Tong Liyuan , Liu Songyu , Qiu Yu .Hazard Potential Evaluation and Treatment Technology of Highway Underlain Goaf [M]. Nanjing: Southeast University Press, 2006.
18 童立元,刘松玉,邱钰 .采空区对高速公路危害性特征与评价方法研究[J].公路交通科技,2005, 22(11):1-5.
Tong Liyuan , Liu Songyu , Qiu Yu .Hazard characteristics and the evaluation methods for mined-out region under expressways[J]. Journal of Highway and Transportation Research and Development, 2005, 22(11): 1-5.
19 孙琦,张向东,杜东宁,等 .浅埋采空区对路基稳定性影响的数值模拟[J].中国地质灾害与防治学报,2015, 26(2):127-131.
Sun Qi , Zhang Xiangdong , Du Dongning , et al . Numerical simulation of the impact of shallow seam goaf on highway safety[J]. The Chinese Journal of Geological Hazard and Control, 2015, 26(2): 127-131.
20 张普纲 .采空区高速公路路基破坏的数值模拟分析[J].煤矿开采,2012, 17(3):74-76,48.
Zhang Pugang . Numerical simulation of expressway roadbed over mined gob[J].Coal Mining Technology, 2012, 17(3): 74-76,48.
21 赵斌臣,郭广礼,吴承红 .高等级公路采动变性破坏数值模拟研究[J].工业安全与环保,2016, 42(3):36-40.
Zhao Binchen , Guo Guangli , Wu Chenghong . Numerical simulation study on high-class failure due to mining deformation[J]. Industrial Safety and Environmental Protection, 2016, 42(3): 36-40.
22 聂承凯,田志忠 .《采空区公路设计与施工技术细则》的解释与应用[J].中国公路,2011(18):116-119.
Nie Chengkai , Tian Zhizhong . Interpretation and application of Techinicals for Design and Construction of Mined-out Area Highway[J].China Highway, 2011(18): 116-119.
23 陈剑,苏跃宏 .交通荷载作用下公路路基动力特性的数值模拟研究[J].公路交通科技,2011, 28(5):44-48.
Chen Jian , Su Yuehong .Numerical simulation of dynamic performance of highway subgrade under traffic loads[J]. Journal of Highway and Transportation Research and Development, 2011, 28(5): 44-48.
[1] 梁瑞,俞瑞利,周文海,黄小彬,王建勇,熊征宇. 空气间隔装药爆破模型在矿房回采中的应用[J]. 黄金科学技术, 2019, 27(3): 358-367.
[2] 秦世康,陈庆发,尹庭昌. 岩石与岩体冻融损伤内涵区别及研究进展[J]. 黄金科学技术, 2019, 27(3): 385-397.
[3] 刘锋,王昭坤,马凤山,王波,王剑波,董春蕾. 矿山深部卸压技术研究现状及展望[J]. 黄金科学技术, 2019, 27(3): 425-432.
[4] 方传峰,王晋淼,李剡兵,贾明涛. 基于PFC2D-DFN的自然崩落法数值模拟研究[J]. 黄金科学技术, 2019, 27(2): 189-198.
[5] 王春,王成,熊祖强,程露萍,王怀彬. 动力扰动下深部出矿巷道围岩的变形特征[J]. 黄金科学技术, 2019, 27(2): 232-240.
[6] 吕闹,汪海波. 厚硬顶板弱化前后垮落致灾数值模拟研究[J]. 黄金科学技术, 2019, 27(2): 257-264.
[7] 王从陆,李童. 基于Ventsim的深井线性热源对有效通风量的影响分析[J]. 黄金科学技术, 2019, 27(2): 271-277.
[8] 李响,怀震,李夕兵,张倬瑶. 基于裂纹扩展模型的脆性岩石破裂特征及力学性能研究[J]. 黄金科学技术, 2019, 27(1): 41-51.
[9] 徐金国,戴兴国,闫泽正. 基于D-S证据理论—正态隶属度的岩土边坡稳定性评价[J]. 黄金科学技术, 2018, 26(6): 780-787.
[10] 陈冲,李夕兵,冯帆. 诱导巷道的围岩松动破坏区数值研究[J]. 黄金科学技术, 2018, 26(6): 771-779.
[11] 周子龙,王亦凡,柯昌涛. “多米诺骨牌”破坏现象下的矿柱群系统可靠度评价[J]. 黄金科学技术, 2018, 26(6): 729-735.
[12] 刘连生,钟清亮,闫雷,钟文,梁龙华. 频繁生产爆破加载下饱水岩体累积损伤效应声波测试研究[J]. 黄金科学技术, 2018, 26(6): 750-760.
[13] 李光,马凤山,刘港,郭捷,郭慧高,寇永渊. 金川矿区深部巷道支护效果评价及参数优化研究[J]. 黄金科学技术, 2018, 26(5): 605-614.
[14] 彭博. 库水位骤降耦合不同类型降雨泥岩边坡渗透稳定性数值模拟研究[J]. 黄金科学技术, 2018, 26(5): 647-655.
[15] 胡建华,任启帆,亓中华,张纪伟. 卧虎山铁矿采场极限暴露面积回归优化模型[J]. 黄金科学技术, 2018, 26(4): 503-510.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] 李淑芳, 于永安, 朝银银, 王美娟, 张岱, 刘君, 孙亮亮. 在辽东成矿带找寻层控型金矿床靶区[J]. J4, 2010, 18(3): 59 -62 .
[2] 李斌, 邹海洋, 杨牧, 杜高峰, 韦继康, 王天国. 马来西亚吉兰丹州Ulu Sokor金矿地质特征及找矿方向[J]. J4, 2010, 18(4): 17 -21 .
[3] 姜琪, 王荣超. 甘肃枣子沟金矿床形成环境及矿床成因[J]. J4, 2010, 18(4): 37 -40 .
[4] 原冬成, 徐小凤. 山东曹家埠金矿床的成矿机理与找矿前景[J]. J4, 2010, 18(4): 47 -49 .
[5] 刘远华, 杨贵才, 张轮, 齐金忠, 李文良. 西秦岭阳山超大型金矿床花岗岩岩石地球化学特征[J]. J4, 2010, 18(6): 1 -7 .
[6] 刘东海, 刘新会. 西秦岭寨上特大型金矿床黄铁矿特征及其含金性研究[J]. J4, 2010, 18(6): 8 -12 .
[7] 黄建军, 李天恩, 范红科. 大兴安岭地区金(银)多金属矿成矿地质背景及找矿潜力的探讨[J]. J4, 2010, 18(6): 13 -17 .
[8] 张涛, 肖小强. 北祁连宁缠河地区花岗岩地球化学特征[J]. 黄金科学技术, 2011, 19(1): 6 -10 .
[9] 张燕, 汤倩. 剪切带型金矿研究进展——以云南哀牢山金矿带为例[J]. J4, 2011, 19(1): 11 -15 .
[10] 张华全,张维昕,李洪杰. 山东胶莱盆地金矿成矿条件及找矿方向[J]. J4, 2008, 16(2): 12 -17 .