img

QQ群聊

img

官方微信

高级检索

黄金科学技术 ›› 2020, Vol. 28 ›› Issue (5): 771-777.doi: 10.11872/j.issn.1005-2518.2020.05.158

• 采选技术与矿山管理 • 上一篇    下一篇

球磨机细磨阶段钢段与钢球磨矿效果对比

王旭东1(),肖庆飞1,2(),张谦1,杨森1,马帅1   

  1. 1.昆明理工大学国土资源工程学院,云南 昆明 650093
    2.矿物加工科学与技术国家重点实验室,北京 100070
  • 收稿日期:2019-09-23 修回日期:2020-06-12 出版日期:2020-10-31 发布日期:2020-11-05
  • 通讯作者: 肖庆飞 E-mail:852911345@qq.com;13515877@qq.com
  • 作者简介:王旭东(1995-),男,河南新乡人,硕士研究生,从事碎磨理论与工艺研究工作。852911345@qq.com
  • 基金资助:
    国家自然科学基金面上项目“多级配球介质磨矿的能量匹配及机理研究”(51774157);矿冶过程自动控制技术国家(北京市)重点实验室开放基金项目“半自磨钢球配比及衬板形状优化模拟仿真技术研究”(201905);安徽省重点研究和开发计划面上攻关项目“复杂难处理铜(硫铁)矿清洁高效节能综合利用关键技术研究”(201904a07020044)

Comparison of Grinding Effect Between Steel Section and Steel Ball During Fine Grinding Stage of Ball Mill

Xudong WANG1(),Qingfei XIAO1,2(),Qian ZHANG1,Sen YANG1,Shuai MA1   

  1. 1.School of Land and Resources Engineering,Kunming University of Science and Technology,Kunming 650093,Yunnan,China
    2.State Key Laboratory of Mineral Processing Science and Technology,Beijing 100070
  • Received:2019-09-23 Revised:2020-06-12 Online:2020-10-31 Published:2020-11-05
  • Contact: Qingfei XIAO E-mail:852911345@qq.com;13515877@qq.com

摘要:

针对大坪选厂细磨工段磨矿产品粒度均匀性差,磨矿细度-0.074 mm含量不达标,过粉碎含量偏高等问题,制定了磨矿介质制度优化方案,通过实验室磨矿试验得出细磨工段磨矿介质采用钢段效果更佳,其磨矿介质制度:Φ45×50∶Φ35×40∶Φ30×35∶Φ25×30=30∶20∶20∶30。试验结果表明:全面钢段方案与钢球方案及现厂方案相比,各项指标均得到一定的提高,过粗级别+0.10 mm产率分别减少了0.73个百分点和5.42个百分点,过粉碎级别-0.010 mm产率分别减少了2.51个百分点和0.77个百分点,磨矿细度-0.074 mm含量分别提高了1.75个百分点和5.33个百分点,中间易选级别0.100~0.038 mm产率分别提高了1.96个百分点和5.57个百分点,磨矿技术效率分别提高了3.54个百分点和8.14个百分点,磨机-0.074 mm利用系数分别提高了3.15%和10.24%。因此,根据试验前后各项指标对比,全面钢段更加适用于细磨工艺,能够有效改善“两端多、中间少”的现象,提高磨矿效率和合格产品质量占比。

关键词: 细磨, 磨矿产品, 磨矿细度, 过粉碎, 钢段, 钢球

Abstract:

The particle size of the grinding products in the fine grinding section of a domestic mineral processing plant is uneven,and there are more coarse-grained and over-fine-grained grades.At the same time,the content of the grinding fineness -0.074 mm does not meet the standard.According to the current mill grinding process,combined with the nature of the ore itself in the concentrator,the grinding quality is improved through the grinding process.This paper uses the international standard sieve for particle size screening of the ore sampled uniformly,combined with the spherical diameter semi-theoretical formula to formulate the grinding plan,compare the grinding results,evaluate and select the best grinding plan.Laboratory test results and data analysis show that the grinding media system is Φ45×50∶Φ35×40∶Φ30×35∶Φ25×30=30∶20∶20∶30. Compared with the steel ball plan and the current plant plan,the overall steel section plan has an over-coarse level of 0.10 mm and a yield reduction of 0.73 percentage points and 5.42 percentage points,respectively,and an over-pulverization level of 0.010 mm and a yield reduction of 2.51 percentage points and 0.77 percentage points,respectively.The grinding fineness -0.074 mm content has increased by 1.75 percentage points and 5.33 percentage points respectively.The intermediate easy-selection grade 0.100~0.038 mm yield has increased by 1.96 percentage points and 5.57 percentage points,respectively,and the grinding technology efficiency has been improved by 3.54 percentage points and 8.14 percentage points,mill q-200 increased by 3.15% and 10.24%.According to the comparison of various grinding indexes,it can be concluded that the grinding method of the steel section in the grinding process is mainly based on the grinding and peeling effect,supplemented by the impact effect,which can effectively reduce the content of coarse-grained and super-fine-grained grades,and improve the qualified grain.The level of content reduces the difficulty of flotation.The increase of the efficiency of grinding technology shows the improvement of the quality of grinding products,and the increase of the mill q-200 shows the improvement of the production capacity of the mill’s unit effective volume.The above conclusions indicate that the steel segment is more suitable for fine grinding process,it improve the quality of grinding products,the production capacity of the mill and the efficiency of the enterprise.

Key words: fine grinding, grinding products, grinding fineness, over-crushing, steel section, steel ball

中图分类号: 

  • TD952

表1

磨机给矿粒度组成"

级别/mm级别产率/%筛上累计产率/%筛下累计产率/%
合计100.00
+0.9000.410.41100.00
-0.900+0.4501.812.2299.59
-0.450+0.30011.4213.6497.78
-0.300+0.20020.5134.1586.36
-0.200+0.15014.8549.0065.85
-0.150+0.10024.7274.7251.00
-0.100+0.0748.0481.7626.28
-0.074+0.0389.8591.6118.24
-0.038+0.0193.5395.148.39
-0.019+0.0102.4697.604.86
-0.0102.40100.002.40

表2

磨机排矿粒度组成"

级别/mm级别产率/%筛上累计产率/%筛下累计产率/%
合计100.00
+0.9000.170.17100.00
-0.900+0.4500.630.8099.86
-0.450+0.3006.217.0199.20
-0.300+0.20015.8822.8992.99
-0.200+0.1506.4629.3577.11
-0.150+0.10016.8946.2470.65
-0.100+0.07423.9770.2153.76
-0.074+0.03810.9681.1729.79
-0.038+0.0195.9887.1518.83
-0.019+0.0106.6193.9612.85
-0.0106.24100.006.24

图1

磨机给矿和磨机排矿负累计粒度特性对数曲线"

表3

实验室磨矿条件"

磨机尺寸/(mm×mm)磨矿方式球磨机转速率/%磨矿时间/min球荷重量/kg给矿量/kg磨矿介质制度
200×240湿磨748111变量

表4

实验室磨矿方案"

方案介质配比平均球径/mm
全面钢段方案45×50∶35×40∶30×35∶25×30=30∶20∶20∶30-
替代钢段方案45×50∶35×40∶25×30=30∶40∶30-
钢球方案Ф50∶Ф40∶Ф30=30∶40∶3040.00
现厂方案Ф60∶Ф50∶Ф40∶Ф30=25∶25∶25∶2545.00
偏大方案Ф60∶Ф50∶Ф40=30∶40∶3050.00
偏小方案Ф40∶Ф30=50∶5035.00

表5

磨矿效果评价指标"

序号评价指标
1+0.100 mm粗级别产率(γ+0.10mm,%)
2-0.074 mm级别产率(γ-0.074mm,%)
3中间易选级别产率(γ0.10-0.038mm,%)
4-0.010 mm过粉碎级别产率(γ-0.010mm,%)
5磨矿技术效率(,%)
6磨机-0.074 mm利用系数(q-200,t/m3·h-1

图2

各方案γ+0.100 mm(a)、γ-0.010 mm(b)、γ-0.074 mm(c)、γ-0.100+0.038 mm(d)产率对比"

图3

各方案磨矿技术效率"

图4

各方案磨机利用系数"

1 曹亦俊,段希祥. 粗磨球磨机球径精确化研究[J]. 有色金属(选矿部分),2001,53(3):24-26,30.
Cao Yijun, Duan Xixiang.Study on the precision of the ball diameter of coarse grinding ball mill[J]. Nonferrous Metals(Mieral Processing),2001,53(3):24-26,30.
2 肖庆飞,康怀斌,张红华,等. 优化球荷特性提高磨矿产品粒度均匀性的研究[J]. 矿产保护与利用,2015(5):25-28.
Xiao Qingfei,Kang Huaibin,Zhang Honghua,et al.Optimization of ball loading characteristics to improve the uniformity of grain size of grinding products[J].Conservation and Utilization of Mineral Resources,2015(5):25-28.
3 段希祥.我国粗磨球磨机钢球尺寸状况的分析[J].矿冶工程,1998,18(1):23-26.
Duan Xixiang.Analysis of the size of the steel ball of coarse grinding ball mill in China[J].Mining and Metallurgical Engineering,1998,18(1):23-26
4 常富强,段德华,宋龚.生产中提高球磨机磨矿效率的方法[J].现代矿业,2011,28(4):81-84.
Chang Fuqiang,Duan Dehua,Song Gong.Method for improving the grinding efficiency of ball mill in production[J].Modern Mining,2011,28(4):81-84.
5 毛益平,陈炳辰,高继森.球磨机有功功率和磨矿效率影响因素研究[J].矿业工程,2000,20(4):48-50.
Mao Yiping,Chen Bingchen,Gao Jisen.Research on factors affecting the active power and grinding efficiency of ball mill[J].Mining and Metallurgical Engineering,2000,20(4):48-50.
6 姚光前.球磨机转速、磨球尺寸对磨矿效率的影响[J].化工矿物与加工,2015,44(7):18-20.
Yao Guangqian.Influence of ball mill speed and grinding ball size on grinding efficiency[J].Industrial Minerals and Processing,2015,44(7):18-20.
7 Xiao Q F,Kang H B,Li B,et al.Optimization study to the ratio of primeval ball loading in 4.0×6.0 m overflow ball mill of Yingezhuang gold mine[J].Aasia procedia,2014,7:14-19.
8 邓东峰.某大型铜矿球磨机提高磨矿效率的实践研究[J].有色金属(选矿部分),2016,68(2):65-68.
Deng Dongfeng.Practical study on improving grinding efficiency of a large copper ore ball mill[J].Nonferrous Metals(Mineral Processing Section),2016,68(2):65-68.
9 高洋,刘志斌,杨德生,等. 提高黄金选矿厂磨矿效率的半工业试验研究[J].矿冶,2013(1):26-29.
Gao Yang,Liu Zhibin,Yang Desheng,et al.Semi-industrial experimental study on improving grinding efficiency of gold concentrator[J].Mining and Metallurgy,2013(1):26-29.
10 谢敏雄,李政要,林属,等.提高选矿厂磨矿系统效能的技术改造及应用研究[J].黄金科学技术,2012,20(6):65-68.
Xie Minxiong,Li Zhengyao,Lin Shu,et al.Technical transformation and application research to improve the efficiency of the grinding system of the concentrato[J].Gold Science and Technology,2012,20(6):65-68.
11 黄尚明. 提高自磨机效率的措施[J]. 矿业工程,2007,5(6):47-48.
Huang Shangming.Measures to improve the efficiency of self-grinding mill[J]. Mining Engineering,2007,5(6):47-48.
12 段希祥,杨志惠.提高矿石细磨效率的途径研究[J].云南冶金,1989(4):14-18.
Duan Xixiang,Yang Zhihui.Research on ways to improve the fine grinding efficiency of ore[J].Yunnan Metallurgy,1989(4):14-18.
13 段希祥.新型细磨介质应用研究[J].昆明理工大学学报,1998(6):11-15.
Duan Xixiang.Research on application of new fine grinding media[J].Journal of Kunming University of Science and Technology,1998(6):11-15.
14 钟旭群.介质配比对磨矿效果影响的试验研究[J].矿冶,2014,23(5):24-26.
Zhong Xuqun.Experimental study on the effect of medium ratio on grinding effect[J].Mining and Metallurgy,2014,23(5):24-26.
15 于福家,韩跃新.磨机细磨介质研究[J].金属矿山. 1997(3):29-31.
Yu Fujia,Han Yuexin.Mill fine grinding medium research[J].Metal Mine,1997(3):29-31.
16 Bryson M A W.Mineralogical control of minerals processing circuit design[J].Journal of Southern African In- stitute of Mining and Metallurgy,2004,104(6):301-310.
17 陈炳晨.磨矿原理[M]. 北京:冶金出版社,1989:23-25.
Chen Bingchen.Grinding principle[M]. Beijing:Metallurgical Press,1989:23-25.
18 Zhang H J,Liu J T,Cao Y J,et al. Effects of particle size on lignite reverse flotation kinetics in the pres- ence of sodium chloride[J].Powder Technology,2010(246):658-663.
19 刘磊,曹进成,吕良,等. 不同破碎方式下磨矿技术效率[J].中国有色金属学报,2015,25(9):2565-2574.
Liu Lei,Cao Jincheng,Lü Liang,et al.Grinding technical efficiency under different crushing methods[J].The Chinese Journal of Nonferrous Metals,2015,25(9):2565-2574.
20 王建中,段宇东.尖山选厂球磨机利用系数攻关的探索与实践[J]. 金属矿山,2003(9):56-57.
Wang Jianzhong,Duan Yudong.Exploration and practice of tackling the utilization coefficient of ball mill in Jianshan Plant[J]. Metal Mine,2003(9):56-57.
[1] 李付博, 肖庆飞, 黄胤淇, 张谦, 王旭东. 江西某铜矿大型球磨机介质制度优化试验研究[J]. 黄金科学技术, 2020, 28(4): 603-609.
[2] 黄胤淇,肖庆飞,郭运鑫,王旭东. 江西某铜矿磨矿对比试验及应用研究[J]. 黄金科学技术, 2019, 27(2): 278-284.
[3] 雷阿丽,吴彩斌,叶景胜,江领培,倪帅男,何水春. 顽石作磨矿介质下含金铜硫矿的磨矿规律研究[J]. 黄金科学技术, 2017, 25(1): 121-126.
[4] 雷小莉,李金泉,徐忠敏,段希祥. 精确化装补球技术在金翅岭金矿选矿厂的应用[J]. 黄金科学技术, 2015, 23(6): 87-91.
[5] 曹成超. 新疆某矿山浮选试验研究[J]. 黄金科学技术, 2014, 22(3): 70-76.
[6] 林鸿汉. 某含金铜废石资源化利用试验研究[J]. 黄金科学技术, 2014, 22(3): 77-81.
[7] 张文波,董常平,陈庆根,李晓伟. 超细磨技术在铜金精矿湿法综合回收铜金硫中的应用研究[J]. 黄金科学技术, 2013, 21(5): 67-70.
[8] 杨建,王建平. 氰化系统阶段提高金精矿磨矿细度的生产实践[J]. 黄金科学技术, 2013, 21(4): 91-94.
[9] 谢敏雄,李政要,林属勇,迟晓鹏,亓传铎. 提高选矿厂磨矿系统效能的技术改造及应用研究[J]. 黄金科学技术, 2012, 20(6): 65-68.
[10] 陈庚琦. 某含金铁矿石选矿试验研究[J]. 黄金科学技术, 2012, 20(5): 74-80.
[11] 拜鹏程,何烨,陈芳芳,李科科. 磨矿细度和二浸二洗对氰化浸出率影响的试验研究[J]. 黄金科学技术, 2012, 20(5): 71-73.
[12] 徐忠敏,庄宇凯,栾作春. 部分正交析因法在浮选流程优化试验中的应用[J]. J4, 2008, 16(1): 7-11.
[13] 曾妙先. 金矿石品位和磨矿细度、浮选指标的关系研究[J]. J4, 2003, 11(4): 28-34.
[14] 任金菊, 马晶. 提高某碳质片岩型微细粒金矿石炭浸工艺金浸出率试验研究[J]. J4, 2002, 10(1): 18-22.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] 杨守斌, 于小翠, 张振平. 山东三山岛金矿浮选起泡剂应用的对比研究[J]. J4, 2011, 19(1): 61 -63 .
[2] 张印飞. 陕西双王金矿床八号矿体矿化规律探讨[J]. J4, 2008, 16(1): 35 -38 .
[3] 赵海,崔学武,徐伦先. 吉林汪清九三沟金矿床地质及同位素特征探讨[J]. J4, 2008, 16(1): 48 -51 .
[4] 李洪杰, 戚静洁, 马树江. 胶西北地区金矿床构造控矿规律[J]. J4, 2010, 18(4): 41 -46 .
[5] 迟继松, 牌洪坤, 亓传铎, 王虎, 秦香伟, 李文玉. 伴有充填体矿石选矿方法的研究与应用[J]. J4, 2010, 18(4): 68 -70 .
[6] 耿阿乔, 段建华. 青海满丈岗金矿控矿因素及找矿靶区分析[J]. J4, 2010, 18(6): 34 -37 .
[7] 李斌, 邹海洋, 杨牧, 杜高峰, 韦继康, 王天国. 马来西亚吉兰丹州Ulu Sokor金矿地质特征及找矿方向[J]. J4, 2010, 18(4): 17 -21 .
[8] 闫杰, 覃泽礼, 谢文兵, 蔡邦永. 青海南戈滩—乌龙滩地区多金属地质特征与找矿潜力[J]. J4, 2010, 18(4): 22 -26 .
[9] 胡琴霞, 孙彬, 亢瑜, 李淑芳, 张圣潇. 甘肃北金山金矿地质特征及成因[J]. J4, 2010, 18(6): 18 -21 .
[10] 张华全,张维昕,李洪杰. 山东胶莱盆地金矿成矿条件及找矿方向[J]. J4, 2008, 16(2): 12 -17 .